國立彰化師範大學 100 學年度碩士班招生考試試題

系所:<u>數學系</u> 科目:<u>線性代數</u>

☆☆請在答案紙上作答☆☆

共1頁,第1頁

1. Let
$$W = \begin{cases} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} : x_1 + x_2 + x_3 + x_4 = 0$$
 be a subspace of \mathbb{R}^4 .

- (1) Find a basis of W.(7%)
- (2) Find an orthonormal basis of W. (8%)
- **2.** Let V be a real vector space and let W_1 and W_2 be two subspaces of V. Prove that if $W_1 \cup W_2$ is a subspace of V, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. (15%)
- **3.** Let V be the real vector space of real valued functions defined on $(0,\infty)$.
 - (1) Is $\{\cos x, \sin x, e^x\}$ a linearly independent set in V? Explain. (6%)
 - (2) Is $\{\cos x, \cos 2x, \cos 3x, \cos^2 x, \cos^3 x\}$ a linearly independent set in V? Explain. (6%)
 - (3) Is $\left\{\frac{1}{(x+1)}, \frac{1}{(x+1)^2}, \dots, \frac{1}{(x+1)^n}\right\}$ a linearly independent set in V? Explain. (8%)

4. Let
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$
. Compute A^{100} . (17%)

- 5. (1) Let $\mathbf{e}_0 = [0,0]^T$, $\mathbf{e}_1 = [1,0]^T$ and $\mathbf{e}_2 = [0,1]^T$. Suppose $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are vertices of a triangle. Show that there exist a unique invertible 2×2 matrix A and a unique column vector $\mathbf{b} \in \mathbb{R}^2$ so that the map $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$, given by $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^2$, satisfies $\mathbf{f}(\mathbf{e}_i) = \mathbf{v}_i$, i = 0,1,2. (8%) (2) Suppose $\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^2$ are vertices of a triangle. Prove (1) with \mathbf{e}_i replaced by \mathbf{u}_i . (8%)
- **6**. Let $M_2(\mathbb{R})$ be the real vector space of all 2×2 matrices with real coefficients. For a 2×2 matrix A, define $T_A: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by $T_A(X) = AX XA$. Show that if A is not a multiple of the identity matrix, then the rank of $\operatorname{rank}(T_A)$ is 2 [Hint: Determine the rank of T_A if A is a Jordan matrix]. (17%)