國立高雄師範大學 100 學年度碩士班招生考試試題

(請用藍、黑色筆作答,以其他顏色或鉛筆作答者不予計分)

系所別: 化學系

科 目:綜合化學二(含有機化學、物理化學)(第1頁,共3頁)

- 一、簡答題:(每題 6%,共計 36%)
 - (1) 說明下列溴化物在 MeOH 液中進行 S_N1 反應時,其反應速率大小順序為何?簡述原因。

- (3) 某有機化合物的質譜中呈現分子離子(M^+)在 m/e=78,其吸收峰相對強度為 20.1,另外在 m/e=79;m/e=80 與 m/e=81 者吸收峰之相對強度分別為 0.9;6.68 與 0.22,試預測此化合物之分子式,簡述理由。
- (4) 化合物 $C_{11}H_{14}O_2$ 的光譜資料如下: 1H NMR: $\delta 1.0$ (t, 3H); $\delta 1.3$ (m, 2H); $\delta 3.5$ (t, 2H); $\delta 3.8$ (s, 2H) 與 $\delta 7.3$ (m, 5H),而 IR 光譜在 1735cm $^{-1}$ 有強吸收,請推導其正確化學結構式。
- (5) 為何 (CH₃)₂CH-CH=CH₂ 在 Br₂/CCl₄ 中進行加成反應時,不易形成 (CH₃)₂CBrCH₂CH₂Br 產物?但 H₂NCH₂CHClCH₂CH₃ 在 OH 液中為何可生成 HOCH₂CHCH₂CH₃ ?

(背面有題)

第1頁,共3頁

系所別:化學系

科 目:綜合化學二(含有機化學、物理化學)(第2頁,共3頁)

(6) 完成下列反應機構

二、寫出下列反應主要產物之化學結構式(每題2%,共計14%)

(1)
$$CH_3 \xrightarrow{CH_2I_2} Zn, CuCl$$

(2)
$$C \equiv C - CH_2CH_3 \xrightarrow{(1)Hg(OAc)_2} ?$$

$$(3) CH_3 CO_2CH_3$$

$$+ CC_2CH_3$$

$$CO_2CH_3$$

$$+ CC_2CH_3$$

(5)
$$CH_2CONH_2$$
 $LiAlH_4$ $(excess)$?

(6)
$$\frac{O}{CH_3} \xrightarrow{(1)(CH_3CH_2)_2CuLi}$$
 ?

$$(7)$$

$$(1)OsO_4, THF$$

$$(2)H_2O_2$$
?

 \equiv One mole of an ideal gas at 25 °C and 1 bar is expanded reversibly and isothermally to a pressure of 0.1 bar. What are the values of (1) q (joule), (2) w (joule), (3) Δ U (joule), (4) Δ H (joule), (5) Δ G (joule), (6) Δ A (joule) and (7) Δ S (joule/K)? (14%)

系所別: 化學系

科 目:綜合化學二(含有機化學、物理化學)(第3頁,共3頁)

- The standard electromtiove force of the cell $Pt \mid H_2(g) \mid HCl(ai) \mid AgCl(s) \mid Ag$ has been determined from 0 to 90 °C by R. G. Bates and V. E. Bower. Their data may be represented by $E = 0.23659 4.8564 \times 10^{-4} \text{ t} 3.4205 \times 10^{-6} \cdot \text{ t}^2 + 5.869 \times 10^{-9} \text{ t}^3$ (the unit of E is V, the unit of t is °C-). Please determine (1) ΔG° (joule/mole), (2) ΔS° (joule/(k*mole)), (3) ΔH° (joule/mole) and (4) $\Delta C_{\scriptscriptstyle p}^{\circ}$ (joule/(K*mole)) at 25 °C for the reaction $1/2H_2(g) + AgCl(s) = HCl(ai) + Ag(s) (8\%)$
- \pm The simplest problem to treat in quantum mechanics is that of a particle of mass m constrained to move in a one-dimensional box of length a. The potential energy V(x) is taken to be 0 for 0 < x < a and infinite outside this region. Please answer the following questions for this simplest problem: (1) What is the Hamiltonian operator? (2) What is the time-independent Schrodinger equation? (3) What is the total energy of ground state? (4) What is the zero-point energy? (5) What is the time-independent wave function of ground state? (6) What is the time-dependent Schrodinger equation? (7) What is the time-dependent wave function of ground state? (14%)
- ∴ For O (g), the following terms may arise: ${}^{1}S_{0}$ ${}^{1}D_{2}$ ${}^{3}P_{0}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$. Please answer the following questions: (1) Which term is ground state? (2) How many microstates in ${}^{3}P_{2}$? (3) How many microstates in all terms? (4) What is the electronic partition function q for O(g) at very high temperature? (5) What is the electronic partition function q for O(g) at 0K? (10%)
- \pm · For $k = aT^m \exp[-b/(k_BT)]$, where k is rate constant, k_B is Boltzmann constant and T is absolute temperature, please derive the Arrhenius parameters, Ea and A. (4%)