國立臺灣師範大學 100 學年度碩士班招生考試試題

科目:電子學 適用系所:工業教育學系

注意:1.本試題共3頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

- 1. For the series-series feedback amplifier in Fig. 1, the op amp is characterized by an open-loop voltage gain μ =10⁵ V/V, an input differential resistance R_{id} =10 kΩ, and an output resistance r_{O} =100 Ω. The amplifier supplies a current i_{O} to a load of resistor R_{L} =1 kΩ. The feedback network is composed of resistors r=100 Ω, R_{O} =10 kΩ, and R_{O} =100 Ω. It is required to find (30 %)
 - (a) the gain-with-feedback $Af \equiv i_O/v_S$,
 - (b) the input resistance R_{in} , and
 - (c) the output resistance R_{out} .

Fig. 1

國立臺灣師範大學 100 學年度碩士班招生考試試題

2. Find the voltage gain v_0/v_i and the input resistance R_i of the amplifier shown in Fig. 2 assuming $\beta=100$. (20 %)

Fig. 2

- 3. The open-loop gain of an internally compensated op amp is 86 dB at very low frequencies and is 60 dB at 200 kHz. Estimate the 3-dB frequency and the unity-gain frequency of the op amp. (10 points)
- 4. In Fig. 3, v_{sig} is a small sine-wave signal with zero average. Assume that the PMOS has a very large output resistance r_o and a threshold voltage $V_{tp} = -0.6$ V. (20 points)
 - (a) Find a value for R_S to bias the transistor at the drain current $I_D = 0.5$ mA and the overdrive voltage $|V_{OV}| = 0.4$ V.

國立臺灣師範大學 100 學年度碩士班招生考試試題

- (b) Find a value for R_D to result in the voltage gain $\frac{v_o}{v_{sig}} = -15 \text{ V/V}$.
- (c) Explain the body effect? Does this circuit have the body effect? Reason your answer.

5. Figure 4 shows a differential amplifier. Sketch the differential half-circuit for this circuit and use it to derive an expression for the differential gain $A_d \equiv v_{od} / v_{id}$ in terms of g_m , R_D , and R_S . Neglect the Early effect. (20 points)

