科目:應用力學

適用系所:機電科技學系

注意:1.本試題共4頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. The crate, supported by the shear-leg derrick, creates a force of $\mathbf{F}_B = 600 \mathrm{N}$ along strut AB and $F_C = 900$ N along cable AC. Represent each force as a Cartesian vector. (10分)

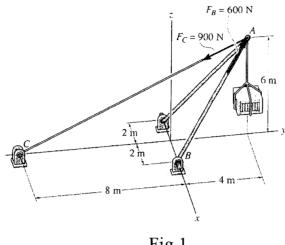


Fig.1

2.Determine the force in each member of the truss and state if the members are in tension or compression. Assume each joint as a pin. Set P = 8 kN. (15 %)

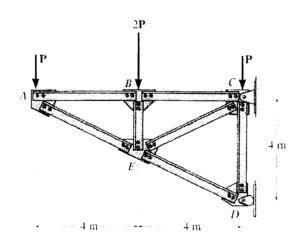


Fig.2

3.Determine the shear force and moment at points C and D. (15 分)

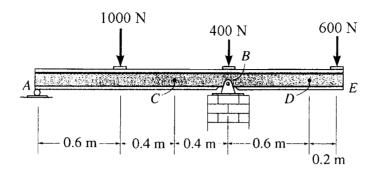


Fig.3

4.Locate the centroid (\bar{x}, \bar{y}) of the member's cross-sectional area. (10 分)

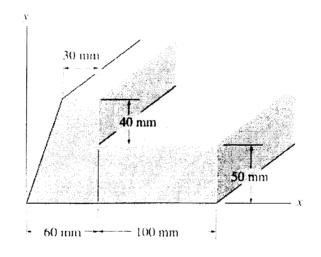


Fig.4

5. Balls A and B have identical mass m, and both are suspended from cords of length L. Ball A is released from rest at angle ϕ ($0 < \phi < 0.5\pi$) and swings down to strike B at lowest point. Determine (1) the speed of each ball just after impact and (2) the maximum angle θ through which B will swing. The coefficient of restitution between the balls is e. (12 $\hat{\pi}$)

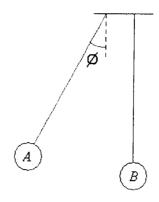


Fig.5

6. A crate with mass m lies against the cushion for which the coefficient of static friction is μ_s . If the cushion rotates about the z axis with a constant angular speed ω ,. (1) What happen to the crate when $\theta = 0^{\circ}$? Increasing the value of angle θ of the cushion, determine the value of θ at which the crate will change its condition on the cushion, (2) What happen to the crate when $\theta = 90^{\circ}$? Decreasing the value of angle θ of the cushion, determine the value of θ at which the crate will change its condition on the cushion. Given: m = 80kg, r = 4m, $\omega = 1.5rad / s$, $\mu_s = 0.5 \cdot (14 \%)$

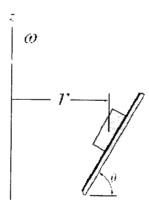


Fig.6

7. Rod AB moves to the left at a speed of v and an acceleration of a. At the instant θ , determine (1) the angular velocity and (2) angular acceleration of rod CD. (12 %)

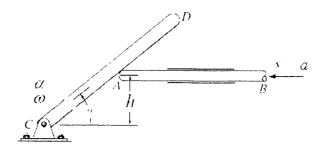


Fig.7

8. The wheel has a mass M and a radius of gyration k_G . If it rolls without slipping down the inclined plank, determine the horizontal and vertical components of reaction at A, and the normal reaction at the smooth support B at the instant the wheel is located at the midpoint of the plank. The plank has negligible thickness and has a mass m. (12 \Re)

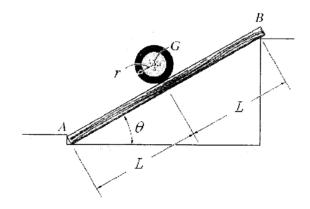


Fig.8