國立臺灣師範大學 100 學年度碩士班招生考試試題

科目:基礎數學 適用系所:數學系

注意: 1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

Let \mathbb{R} be the field of real numbers.

1. Let $V = M_2(\mathbb{R})$ be the vector space of all 2×2 matrices over \mathbb{R} and let

$$A = \left(\begin{array}{cc} 3 & 1 \\ 6 & 2 \end{array}\right).$$

Suppose that $T: V \to V$ is the linear operator on V defined by T(C) = AC for any $C \in V$. Moreover, let $\mathbf{B} = \{v_1, v_2, v_3, v_4\}$ where

$$v_1=\left(egin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}
ight), v_2=\left(egin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}
ight), v_3=\left(egin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}
ight), v_4=\left(egin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}
ight).$$

- (a) [6 points] Show that **B** is a basis for V.
- (b) [6 points] Find the null space of T.
- (c) [6 points] Find the rank of T.
- (d) [8 points] Find the matrix representation $[T]_{\mathbf{B}}$ of T in the ordered basis \mathbf{B} .
- (e) [8 points] Find the characteristic polynomial of T.
- 2. Consider the matrix

$$A = \left(egin{array}{ccc} 6 & -6 & -4 \ 4 & -4 & -4 \ 0 & 0 & 2 \end{array}
ight) \in \mathrm{M}_3(\mathbb{R}).$$

- (a) [8 points] Find all the eigenvalues of A.
- (b) [8 points] Determine if A is diagonalizable.
- 3. Evaluate the following statements:

(a) [4 points]
$$\int \sec^3 x \, dx$$

(b) [4 points]
$$\int_{-1}^{1} \frac{1}{x^2} dx$$

(c) [4 points]
$$\lim_{x\to 0^+} (\sin x)^x$$

(d) [4 points]
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n n}$$

(e) [4 points]
$$\int_2^4 \frac{\sqrt{\ln(9-x)} \, dx}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}}$$
.

(f) [4 points]
$$g(x) = \sin(x^3)$$
. Find $g^{(9)}(0)$.

(g) [4 points]
$$f(x,y) = \int_x^y \sqrt{1+t^3} dt$$
. Find $f_x(x,y)$.

國立臺灣師範大學 100 學年度碩士班招生考試試題

- 4. The region A is common to the two regions bounded by the curves $r = -6\cos\theta$ and $r = 2 2\cos\theta$.
 - (a) [5 points] Find the area of A.
 - (b) [5 points] Find the arc length of the circumference of A.
 - (c) [5 points] Find the area of the surface formed by revolving A about the line $\theta = \pi/2$.
- 5. [7 points] Suppose y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x. Prove that y = f(g(x)) is a differentiable function of x and $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$.