## 國立臺灣師範大學 100 學年度碩士班招生考試試題

科目:高等微積分

適用系所:數學系

注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. (15  $\Re$ ) Consider a bounded closed rectangle  $E \subseteq \mathbb{R}^2$  and suppose  $f: E \to \mathbb{R}$  is continuous. Prove that f attains its maximum and minimum, f has the intermediate value property, and f is uniformly continuous on E.

## 2. (10分)

(a) Let  $\{s_n\}$  be a real sequence with

$$s_1 \ge s_2 \ge \cdots \ge s_n \ge s_{n+1} \ge \cdots \ge 0.$$

Prove that if  $\sum_{n=1}^{\infty} s_n$  converges, then  $\lim_{n\to\infty} ns_n = 0$ , but the converse statement does not hold.

(b) Determine whether the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}{n}.$$

3. (10  $\Rightarrow$ ) Suppose  $f:(a,b)\to(c,d)$  is differentiable,  $f'(x)\neq 0$  for each  $x\in(a,b)$ , and f is onto. Prove that f is a homeomorphism and the inverse function  $f^{-1}:(c,d)\to(a,b)$  is differentiable with the derivative

$$(f^{-1})'(y) = \frac{1}{f'(x)},$$
 where  $y = f(x)$ .

## 4. (15 分)

- (a) Prove that if  $\{K_n\}$  is a sequence of nonempty compact subsets of a metric space such that  $K_1 \supset K_2 \supset \cdots$ , then  $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$ .
- (b) Suppose that K is a compact metric space, and
  - (i)  $\{f_n\}$  is a sequence of real-values continuous functions on K,
  - (ii)  $\{f_n\}$  converges pointwise to a continuous function f on K, and
  - (iii)  $f_n(x) \ge f_{n+1}(x)$  for all  $x \in K$ , n = 1, 2, ...

Prove that  $f_n \to f$  uniformly on K.

(背面尚有試題)

## 國立臺灣師範大學 100 學年度碩士班招生考試試題

- 5. (15  $\hat{A}$ ) Let A and B be two nonempty subsets of negative real numbers, with inf A = -3 and inf B = -5. Define another set  $C = \{a \times b \mid a \in A, b \in B\}$ . Which of the following statements:
  - (a)  $\inf C = 15$
- (b)  $\sup C = 15$
- (c) inf C = 0
- (d)  $\sup C = 0$

is true? Indicate the correct statement and prove it.

- 6. (10  $\Re$ ) Let  $g(x) = e^{-2x} \cdot \sin(\frac{x}{2})$ . Show that  $g(x) < \frac{1}{\sqrt{17}}$  for all  $x \ge 0$ .
- 7. (10  $\Re$ ) Let h be a real-valued function whose second derivative h'' is continuous over  $\mathbb{R}$ . Given that h(0) = 3, h'(0) = -4, h(2) = -2 and h'(2) = 5, evaluate the integral:

$$\int_0^2 x \, h''(x) \, \mathrm{d}x.$$

8.  $(15 \, \hat{\pi})$  Let *B* be the solid ball  $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le r^2\}$  of radius r > 0 in  $\mathbb{R}^3$ . Evaluate the triple integral:

$$\iiint_{R} (x^2 + y^2 + z^2) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

(試題結束)