
科目:生物化學

適用系所:生命科學系

注意:1.本試題共 8 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

一、選擇題,每題只有一個正確答案,答錯不倒扣。(每題2分,共100分)

- 1. If the rate constant for the enzyme catalyzed reaction is 2×10^5 /sec and the rate constant for the uncatalyzed reaction is 1×10^{-6} /sec, the catalytic power of the enzyme is:
 - (A) 10^{11}
 - (B) 2×10^{-11}
 - (C) 10^{-11}
 - (D) 2×10^{11}
- 2. Identify the type of reaction that would give the right graph:
 - (A) competitively inhibited
 - (B) uncompetitive inhibition.
 - (C) pure noncompetitively inhibited
 - (D) mixed noncompetitively inhibited

3. For an enzyme-catalyzed reaction, the initial velocity was determined at two different concentrations of the substrate. Estimate the value of V_{max} .

[S] (mM)	$V_o(\text{mM/min})$
1.0	2.0
4.0	2.8

- (A) 4.7 mM/min; (B) 0.67 mM/min; (C) 3.19 mM/min; (D) 1.5 mM/min
- 4. 承上一題, Estimate the value of *Km*.
 - (A) 0.17 mM; (B) 5.7 mM; (C) 2.7 mM; (D) 0.60 mM
- 5. _____ side-chains are often involved in general acid-base catalysis, because its pK_a is near 7.0.
 - (A) histidine; (B) glutamate; (C) lysine; (D) cysteine
- 6. When binding one substrate to an allosteric protein decreases the binding of additional same substrate to the same protein, it is termed a:
 - (A) negative heterotropic effector.
 - (B) positive heterotropic effector.
 - (C) negative homotropic effector.
 - (D) positive homotropic effector.
- 7. 下列有關血紅素 (Hb) 與肌紅素 (Mb) 的敘述<u>何者錯誤</u>?
 - (A) Mb shows sigmoidal, whereas Hb shows hyperbolic oxygen saturation curves.
 - (B) Hb shows cooperativity, whereas Mb does not.
 - (C) Mb binds O_2 more tightly than Hb.

- (D) Oxygen binds to a ferrous ion in both proteins.
- 8. Which of following is an anomeric pair?
 - (A) D-glucose and D-fructose
 - (B) α -D-glucose and β -D-glucose
 - (C) D-glucose and L-glucose
 - (D) α -D-glucose and β -L-glucose
- 9. The biochemical property of **lectins** that is the basis for most of their biological effects is their ability to bind to:
 - (A) hydrophobic molecules.
 - (B) specific lipids.
 - (C) specific oligosaccharides.
 - (D) specific peptides.
- 10. Biological oxidation-reduction reactions always involve:
 - (A) direct participation of oxygen.
 - (B) transfer of electron(s).
 - (C) formation of water.
 - (D) transfer of hydrogens.
- 11. The anaerobic conversion of 1 mol of glucose to 2 mol of lactate by fermentation is accompanied by a net gain of:
 - (A) 1 mol of ATP.
 - (B) 1 mol of NADH.
 - (C) 2 mol of ATP.
 - (D) 2 mol of NADH.
- 12. Which of the following substrates can <u>NOT</u> contribute to net gluconeogenesis in mammalian liver?
 - (A) palmitate
 - (B) alanine
 - (C) glutamate
 - (D) pyruvate
- 13. In a tissue that metabolizes glucose via the pentose phosphate pathway, C-1 of glucose would be expected to end up principally in:
 - (A) carbon dioxide.
 - (B) glycogen.
 - (C) pyruvate.
 - (D) ribulose 5-phosphate.

- 14. In amino acid catabolism, the first reaction for many amino acids is a(n):
 - (A) decarboxylation
 - (B) oxidative deamination
 - (C) reduction
 - (D) transamination
- 15. Transamination from alanine to α -ketoglutarate requires the coenzyme:
 - (A) biotin.
 - (B) NADH.
 - (C) pyridoxal phosphate (PLP).
 - (D) thiamine pyrophosphate (TPP).
- 16. If a person's urine contains unusually high concentrations of urea, which one of the following diets has he or she probably been eating recently?
 - (A) Very high carbohydrate, low protein, low fat
 - (B) Very low carbohydrate, high protein, low fat
 - (C) Very low carbohydrate, low protein, high fat
 - (D) Very high carbohydrate, high protein, high fat
- 17. 下列何種生物分子(biomolecules)具有緩衝劑(buffer systems)的作用?
 - (A) glycerol; (B) amino acid; (C) glucose; (D) triacylglycerol
- 18. 下列何種現象是因為分子之間的疏水作用力(Hydrophobic interactions)而產生的結果:
 - (A) binding of a hormone to its receptor protein.
 - (B) enzyme-substrate interactions.
 - (C) three-dimensional folding of a polypeptide chain.
 - (D) All of the above are true.
- 19. 下列何種生物分子的官能基,不會形成氫鍵 (hydrogen bonds)?
 - (A) hydroxyl group of alcohol
 - (B) methyl group of fatty acid
 - (C) carbonyl group of ketone
 - (D) peptide group of protein
- 20. 生物細胞演化出多種機制以適應環境,下列何者與「避免細胞發生 osmotic lysis」無關?
 - (A) In bacteria and plants, cell wall.
 - (B) Certain freshwater protists, contractile vacuole.
 - (C) In mammals, high concentration of albumin and other proteins in blood plasma.
 - (D) In bacteria and plants, cell membrane.
- 21. 那一種鹽類是細胞質內維持 pH 值衡定的主要鹽類?
 - (A) phosphate

- (B) acetate
- (C) sulfate
- (D) bicarbonate
- 22. 下列何者<u>不屬於</u>脂肪酸 (fatty acids)的衍生物?
 - (A) Prostaglandins; (B) Choline; (C) Sphingolipids; (D) Triacylglycerols
- 23. ATP 水解反應為一自發反應(spontaneous reaction),標準自由能差(G'°) 是負值,然而 ATP 在水溶液中卻很穩定,不易發生水解的原因是?
 - (A) ATP 水解產生的磷酸 (phosphates) 中具有電子共振效應 (resonance stabilization), 很穩定
 - (B) ATP 結構中具有電子共振效應 (resonance stabilization)
 - (C) ATP 水解反應需要吸收能量 (endergonic)
 - (D) ATP 水解反應具有高活化能 (activation energy)
- 24. 哺乳類生物不具有下列那一種代謝途徑?
 - (A) Citric acid cycle; (B) Urea cycle; (C) Cori Cycle; (D) Glyoxylate cycle
- 25. 在粒線體中的電子傳遞鏈,每兩個電子從 NADH 傳遞至 O2 之後,可以產生多少 ATP?
 - (A) 1; (B) 1.5; (C) 2; (D) 2.5
- 26. In the Watson-Crick model of DNA structure:
 - (A) phosphate groups project toward the middle of the helix, where they are protected from interaction with water.
 - (B) T can form three hydrogen bonds with either G or C in the opposite strand.
 - (C) the distance between the sugar backbone of the two strands is just large enough to accommodate either two purines or two pyrimidines.
 - (D) the distance between two adjacent bases in one strand is about 3.4 Å.
- 27. In comparison with DNA-DNA double helices, the stability of DNA-RNA and RNA-RNA helices is:
 - (A) DNA-DNA > DNA-RNA > RNA-RNA.
 - (B) RNA-DNA > RNA-RNA > DNA-DNA.
 - (C) RNA-RNA > DNA-DNA > DNA-RNA.
 - (D) RNA-RNA > DNA-RNA > DNA-DNA.
- 28. Which one of the following analytical techniques does **NOT** help illuminate a gene's cellular function?
 - (A) DNA microarray analysis
 - (B) Protein chip analysis
 - (C) Southern blotting
 - (D) Two-dimensional gel electrophoresis

- 29. The *E. coli* recombinant plasmid pBR322 has been widely utilized in genetic engineering experiments. pBR322 has all of the following features **except**:
 - (A) a number of conveniently located recognition sites for restriction enzymes.
 - (B) a number of palindromic sequences near the EcoRI site, which permit the plasmid to assume a conformation that protects newly inserted DNA from nuclease degradation.
 - (C) a replication origin, which permits it to replicate autonomously.
 - (D) resistance to two different antibiotics, which permits rapid screening for recombinant plasmids containing foreign DNA.
- 30. Membrane fusion leading to neurotransmitter release requires the action of:
 - (A) tSNARE and vSNARE.
 - (B) cadherins.
 - (C) selectins.
 - (D) flipases.
- 31. A ligand-gated ion channel (such as the nicotinic acetylcholine receptor) is:
 - (A) a membrane protein that permits an ion to pass through the membrane only when opened by the appropriate ligand.
 - (B) a charged lipid in the membrane bilayer that allows ions to pass through.
 - (C) a membrane protein that permits a ligand to pass through the membrane only when opened by the appropriate ion.
 - (D) a molecule that binds to the membrane, thereby allowing ions to pass through.
- 32. Steroid hormones are carried on specific carrier proteins because the hormones:
 - (A) cannot dissolve readily in the blood because they are too hydrophobic.
 - (B) cannot find their target cells without them.
 - (C) need them in order to pass through the plasma membrane.
 - (D) require subsequent binding to specific receptor proteins in the nucleus.
- 33. Ubiquitin is a:
 - (A) component of the electron transport system.
 - (B) protein that tags another protein for proteolysis.
 - (C) protein kinase.
 - (D) protein phosphorylase.
- 34. In which group are all the amino acids closely interrelated metabolically?
 - (A) Arginine, hydroxyproline, and histidine
 - (B) Arginine, tyrosine, and glutamate
 - (C) Ornithine, proline, arginine, and glutamate
 - (D) Ornithine, alanine, glycine, and valine

35. Bile pigments are:

- (A) generated by oxidation of sterols.
- (B) responsible for light reception in the vertebrate eye.
- (C) secreted from the pancreas.
- (D) formed in the degradation of heme.

36. In skeletal muscle:

- (A) at rest, fatty acids are the preferred fuel.
- (B) large quantities of triacylglycerol are stored as fuel.
- (C) phosphocreatine can substitute for ATP as the direct source of energy for muscle contraction.
- (D) stored muscle glycogen can be converted to glucose and released to replenish blood glucose.

37. An elevated insulin level in the blood:

- (A) inhibits glucose uptake by the liver.
- (B) stimulates synthesis of fatty acids and triacylglycerols in the liver.
- (C) results from a below-normal blood glucose level.
- (D) stimulates glycogen breakdown in the liver.

38. Topoisomerases can:

- (A) change the number of base pairs in a DNA molecule.
- (B) change the linking number (Lk) of a DNA molecule.
- (C) convert D isomers of nucleotides to L isomers.
- (D) interconvert DNA and RNA.

39. Which of the following contributes to the structure of nucleosomes?

- (A) Plectonemic supercoiled DNA
- (B) Relaxed closed-circular DNA
- (C) Solenoidal supercoiled DNA
- (D) Z (left-handed) DNA

40. The proofreading function of DNA polymerase involves all of the following except:

- (A) a $3' \rightarrow 5'$ exonuclease.
- (B) base pairing.
- (C) detection of mismatched base pairs.
- (D) reversal of the polymerization reaction.
- 41. When bacterial DNA replication introduces a mismatch in a double-stranded DNA, the methyl directed repair system:
 - (A) corrects the mismatch by changing the newly replicated strand.

- (B) changes both the template strand and the newly replicated strand.
- (C) corrects the DNA strand that is methylated.
- (D) corrects the mismatch by changing the template strand.

42. Processing of a primary mRNA transcript in a eukaryotic cell does **NOT** normally involve:

- (A) attachment of a long poly(A) sequence at the 3' end.
- (B) conversion of normal bases to modified bases, such as inosine and pseudouridine.
- (C) excision of intervening sequences (introns).
- (D) joining of exons.
- (E) methylation of one or more guanine nucleotides at the 5' end.
- 43. Which one of the following statements about mRNA stability is true?
 - (A) Degradation always proceeds in the 5' to 3' direction.
 - (B) Degradation of mRNA by polynucleotide phosphorylase yields 5'-nucleoside monophosphates.
 - (C) Secondary structure in mRNA (hairpins, for example) slows the rate of degradation.
 - (D) Rates of mRNA degradation are always at least ten-fold slower than rates of mRNA synthesis.
- 44. Splicing of introns in nuclear mRNA primary transcripts requires:
 - (A) a guanine nucleoside or nucleotide.
 - (B) endoribonucleases.
 - (C) small nuclear ribonucleoproteins (snurps).
 - (D) RNA polymerase II.
- 45. Compared with DNA polymerase, reverse transcriptase:
 - (A) does not require a primer to initiate synthesis.
 - (B) introduces no errors into genetic material because it synthesizes RNA, not DNA.
 - (C) makes fewer errors in synthesizing a complementary polynucleotide.
 - (D) makes more errors because it lacks the $3' \rightarrow 5'$ proofreading exonuclease activity.
- 46. Which of the following is **NOT** true of tRNA molecules?
 - (A) With the right enzyme, any given tRNA molecule will accept any of the 20 amino acids.
 - (B) Their anticodons are complementary to the triplet codon in the mRNA.
 - (C) They contain more than four different bases.
 - (D) They contain several short regions of double helix.
- 47. Posttranslational glycosylation of proteins is inhibited specifically by:
 - (A) chloramphenicol.
 - (B) tunicamycin.
 - (C) puromycin.

- (D) streptomycin.
- 48. Glycosylation of proteins inside the endoplasmic reticulum does **NOT** involve:
 - (A) an Asn residue on the protein.
 - (B) dolichol phosphate.
 - (C) a His residue on the protein.
 - (D) N-acetylglucosamine.
- 49. Protein structural motifs often have general functions in common. Which one of the following motifs is known to be involved in protein dimer formation, but not in direct protein-DNA interactions?
 - (A) zinc finger
 - (B) helix-turn-helix
 - (C) homeodomain
 - (D) leucine zipper
- 50. Gene silencing by RNA interference acts by______of the target gene.
 - (A) inhibiting transcription
 - (B) inhibiting translation
 - (C) inhibiting splicing
 - (D) degradation of the mRNA