國立臺灣師範大學100學年度碩士班招生考試試題

科目:電磁學 適用系所:光電科技研究所

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

第1-5 題選擇題,不須計算過程. 第6-12 題為計算題,需含計算過程.

- 1. The so-called longitudinal wave is defined by: the medium is displaced in the direction (a) perpendicular, (b) parallel, (c) glancing, (d) circled, (e) irrelevant to that of the motion of the wave. (4 分)
- 2. Consider the disturbance given by the expression:

$$\mathbf{E}(z,t) = \left[\hat{a}_x \cos(\omega t) + \hat{a}_y \cos(\omega t - \pi/2)\right] E_o \sin(kz). \tag{4 \%}$$

What kind of polarization is it? (a) non-polarized, (b) linearly-polarized, (c) left-handed circular wave, (d) right-handed circular wave, (e) left-handed circular standing wave (f) right-handed circular standing wave, (g) none of the above.

3. Determine which of the following describe traveling waves:

(a)
$$\Psi(y,t) = \exp\left[-\left(a^2y^2 + b^2t^2 - 2abty\right)\right]$$
, (b) $\Psi(z,t) = A\sin\left(az^2 - bt^2\right)$,

(c)
$$\Psi(x,t) = A \sin \left[2\pi \left(\frac{x}{a} + \frac{t}{b} \right)^2 \right],$$
 (d) $\Psi(x,t) = A \cos^2 \left[2\pi \left(t - x \right) \right]$ (8 %)

4. The electric field of an electromagnetic wave traveling in the positive x-direction is given by

$$\mathbf{E} = \hat{a}_{y} E_{0} \sin\left(\frac{\pi z}{z_{0}}\right) \cos(kx - \omega t).$$
 From wave equation, $k = ?$

(a)
$$\frac{c}{\omega}\sqrt{1-\left(\frac{\pi c}{\omega z_0}\right)^2}$$
, (b) $\frac{\omega}{c}\sqrt{1-\left(\frac{\omega z_0}{\pi c}\right)^2}$, (c) $\frac{\omega}{c}\sqrt{1-\left(\frac{\pi c}{\omega z_0}\right)^2}$

(d)
$$c / \sqrt{1 - \left(\frac{\pi c}{\omega z_0}\right)^2}$$
, (e) $c / \sqrt{1 - \left(\frac{\omega z_0}{\pi c}\right)^2}$, (f) $\omega / \sqrt{1 - \left(\frac{\pi c}{\omega z_0}\right)^2}$,

- (g) none of the above. (8分)
- 5. A non-symmetrical 3-slab optical fiber is constructed with core thickness d = (-d/2 < y < d/2) and refractive index n_1 , two cladding layers with refractive indices n_3

$$(y>d/2)$$
 and n_2 $(y<-d/2)$, where $n_1>n_2>n_3$. The cross section is shown in Figure 1.

What is the minimum incident ray angle θ_m that a guided mode could have in this structure?

(a)
$$\cos^{-1}\left(\sqrt{n_1^2-n_2^2}\right)$$
, (b) $\cos^{-1}\left(\sqrt{n_1^2-n_3^2}\right)$, (c) $\cos^{-1}\left(\sqrt{n_2^2-n_3^2}\right)$, (d) $\sin^{-1}\left(\sqrt{n_1^2-n_2^2}\right)$,

(e)
$$\sin^{-1}\left(\sqrt{n_1^2 - n_3^2}\right)$$
, (f) $\sin^{-1}\left(\sqrt{n_2^2 - n_3^2}\right)$, (g) none of the above. (8 %)

國立臺灣師範大學 100 學年度碩士班招生考試試題

Figure 1

- 6. The phasor of electric field of a light is given by $\mathbf{E}(\mathbf{R}) = \mathbf{E}_0 \exp(-jk\hat{a}_n \cdot \mathbf{R})$, indicating that it is propagating along $+\mathbf{R}$ -direction in space. How can you identify that it is a transverse wave? (8 $\hat{\boldsymbol{\beta}}$)
- 7. The electric field intensity of a linearly polarized uniform plane wave propagating in the +z-direction in seawater is $\mathbf{E}(0,t) = \hat{a}_x 100 \cos\left(10^7 \pi t\right)$ (V/m) at z=0. The constitutive parameters of seawater are $\varepsilon_r = 72$, $\mu_r = 1$, and $\sigma = 4$ (S/m). Determine (1) the loss tangent (2) the attenuation constant, (3) the phase constant, (4) the phase velocity, and (5) the skin depth. (10 \Re)
- 8. A 100 W light bulb converts 2% of its electric power into light. The radiation is distributed evenly over a solid angle $\Omega = 1$ sterad by a reflector. What is the amplitude E_0 of the light field at a distance of d = 50 cm from the bulb? ($\varepsilon_0 = 8.85 \times 10^{-12}$ F/m, $\mu_0 = 4\pi \times 10^{-7}$ H/m) (10 %)
- 9. Determine E-field at point (1,1,0) if (1) $V = V_0 e^{-x} \sin\left(\frac{\pi y}{4}\right)$ (Cartesian Coordinate); (2) $V = E_0 R \cos \theta$ (Spherical Coordinate). (10 \Re)
- 10. Find the energy required to assemble a uniform sphere of charge of radius b and volume charge density ρ . (10 \Rightarrow)
- 11. An air coaxial transmission line has a solid inner conductor of radius a and a very thin outer conductor of inner radius b. Determine the inductance per unit length of the line. (10 %)
- 12. Show that the polarization angles for internal and external reflection at a given interface are complementary. (10 分)