大同大學 100 學年度研究所碩士班入學考試試題

考試科目: 物理化學

所別:化學工程研究所

第全頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

- 1. (10%) Explain
 - (a) triple point,
 - (b) azeotropic point,
 - (c) eutectic point

and plot phase diagrams for each phase behavior.

- 2. (10%) H_2O (I, 100 °C, 1 atm) \Leftrightarrow H_2O (g, 100 °C, 1 atm). The latent heat of vaporization of water is 40.6 kJ/mol. Calculate W, ΔH , ΔU , ΔG and ΔS for the vaporization of one mole of H_2O .
- 3. (10%) The following thermodynamic data apply to the complete oxidation of one mole of butane at 25 °C.

 $C_4H_{10(g)} + 13/2 O_{2(g)} \rightarrow 4CO_{2(g)} + 5 H_2O_{(l)}$ $\Delta H^0 = -2877 \text{ kJ/mole}$ $\Delta S^0 = -432.7 \text{ J/mole K}$

Suppose that a completely efficient fuel cell could be set up utilizing this reaction. Calculate

- (a) the maximum electrical work, and
- (b) the maximum total work that could be obtained at 25 °C.
- 4. (20%) Two mole of an ideal monatomic gas $(\overline{C}_{V} = \frac{3}{2}R)$, initially at 0 °C and 1 bar, is put through each of the reversible steps below. Calculate W, q, Δ U, Δ H and Δ S for each case. (Each step start from 0 °C and 1 bar)
 - (a) Cooling at constant volume to 100 °C.
 - (b) Isothermal compression to 100 bar.
 - (c) Constant pressure heating to 100 °C.
 - (d) Adiabatic expansion to 0.1 bar.
- 5. (20%) (a) Write both electrode reactions and the overall reaction for the cell TI | TICl_(s) | CdCl₂ (0.01m) | Cd

(b) Calculate E and E⁰ for this cell at 25 °C from the following information:

$$TI^+ + e^- \rightarrow TI$$
 $E^0 = -0.34 \text{ V}$
 $Cd^{2+} + 2e^- \rightarrow Cd$ $E^0 = -0.40 \text{ V}$

The solubility product for TICl is $1.6 \times 10^{-3} \text{ mol}^2 \text{dm}^{-6}$ at $25 \, ^{\circ}\text{C}$.

- 6. (15%) A substance decomposes at 500K with a rate constant of $3.72 \times 10^{-5} \text{ s}^{-1}$.
 - (a) Calculate the half-life of the reaction.
 - (b) What fraction will remain undecomposed if the substance is heated for 2 h at 500 K?
- 7. (15%) Nitrogen pentoxide reacts with nitric oxide in the gas phase according to the equation N_2O_5 + $NO \Leftrightarrow 3NO_2$

The following mechanism has been proposed.

$$N_2O_5 \rightarrow NO_2 + NO_3$$

$$NO_2 + NO_3 \rightarrow N_2O_5$$

$$NO + NO_3 \rightarrow 2NO_2$$

Assume the steady state approximation can be applied for the intermediate; derive an equation for the consumption of N_2O_5 .