## 逢甲大學100學年度碩士班招生考試試題編號:074 科目代碼:333

| 科目 | 電子學 | 適系 | 用所 | 電子工程學系固態電子組 | 時間 | 100<br>分鐘 |
|----|-----|----|----|-------------|----|-----------|
|----|-----|----|----|-------------|----|-----------|

## ※請務必在答案卷作答區內作答。

## 共 3 頁第 1 頁

- 1. For a Si semiconductor, please briefly describe the (a) Quasi Fermi level (b) effective density of state in conduction band or valence band (c) Degenerate semiconductor (10%)
- 2. For a PN junction, if the N<sub>A</sub><<N<sub>D</sub>, please (a) draw the minority carrier distribution in a forward bias, (b) draw the energy band diagram in the reverse bias with V<sub>R</sub> voltage, pleaes label the Fermi level position and the built in voltage. (10%)
- 3. Assuming the op amp is ideal shown in **Fig. 1**, if we want to implant a current amplifier with a gain  $i_L/i_I = 30$ , (a) find the required value of R, (b) if  $R_L = 1 \text{ K}\Omega$ , and the op amp operates in an ideal manner that is  $v_0$  in the range  $\pm 15\text{V}$ , find the rang of  $i_I$ , (c) if the amplied is fed with a current source  $i_S = 1\text{mA}$  and source resistance of  $10 \text{ K}\Omega$ , find the  $i_L$  (12%)



- 4. The CS stage MOS amplifier shown in **Fig. 2**,  $V_t = 1V$ ,  $K_n'(W/L) = 2 \text{ mA/V}^2$ ,
  - (a) Please find the dc bias value of  $V_{GS}$  and  $I_D$
- (4%)

(b) if  $V_A = 50$ V, find  $g_m$  and  $r_o$ 

- (4%)
- (c) Find  $R_{in}$ ,  $R_{out}$  and overall voltage gain  $G_V = v_o/v_{sig}$  (10 %)



5. Consider the circuit shown in **Fig. 3**. Let  $\beta = 100$ ,  $C_{\mu} = 1.5 \, \mathrm{pF}$ , and  $f_T = 500 \, \mathrm{MHz}$  for the BJT. By neglecting  $r_x$  and  $r_o$ , calculate the midband gain  $A_M$  and the 3-dB frequency  $f_H$ . (10%)



6. The BJTs in the Darlington follower of **Fig. 4** have  $\beta = 100$ . If the follower is fed with a source having a  $10 \text{ k}\Omega$  resistance and is loaded with  $1 \text{ k}\Omega$ , find the input resistance and the output resistance. (10%)



7. For the differential amplifier shown in **Fig. 5**, all BJTs have  $V_{BE} = 0.7 \text{ V}$  at  $I_C = 1 \text{ mA}$  and  $\beta$  is very large. (a) If  $Q_1$  is off, determine  $v_Q$ . (3%) (b) If  $Q_2$  is off, determine  $v_Q$ . (3%) (c) Find  $v_I$  for  $Q_1$  conducting 99% of I. (4%) (d) Find the small-signal voltage gain. (5%)



8. The shunt-series feedback amplifier circuit shown in **Fig. 6** has  $R_D=10\,\mathrm{k}\Omega$ ,  $R_S=20\,\mathrm{k}\Omega$ , and  $R_F=80\,\mathrm{k}\Omega$ . Assume that  $g_{m1}=g_{m2}=10\,\mathrm{m}$ A/V and no body effect. (a) Find  $A_f=I_o/I_s$  and  $R_m$  by neglecting  $r_o$ . (10%) (b) Find  $R_{out}$  by using  $r_{o2}=40\,\mathrm{k}\Omega$ . (5%)

