科 目 離散數學

適 用 資訊工程學系

時間:

| 100 | 分鐘

*請務必在答案卷作答區內作答。

- 1. (10 %) Please verify the stated logical equivalences.
 - (a) $p \lor q \equiv \neg (\neg p \land \neg q)$.
 - (b) $\neg (p \oplus q) \equiv p \leftrightarrow q$.
- 2. (10%) Which of the relations \in , \subset , \subseteq can replace the symbol \triangleleft in (a) and (b)?
 - (a) $\{9\} \triangleleft \{9, \{9,10\}\}$.
 - (b) $\{3\} \triangleleft \{3, \{3\}, \{\{3\}\}\}$.
- 3. (10%) Solve the following recurrence:

$$\begin{cases} f(n) = 5 f(n-1) - 6 f(n-2) + 1, n \ge 2 \\ f(0) = 1 \\ f(1) = 1 \end{cases}$$

Show your derivation in detail.

- 4. (10%) (a) What is the number of permutations of the letters in the word TERMINALS?
 - (b) What is the number of permutations of the letters in the word MESSAGES?
 - (c) In (b), what is the number of permutations when all S's are together?
- 5. (10%) A sequence of numbers $a_1, a_2, a_3,...$ is defined by (1) $a_1 = 1, a_2 = 2$ (2) $a_n = a_{n-1} + a_{n-2}, n \ge 3$. (a) Determine the values of a_3, a_4, a_5, a_6 , and a_7 . (b) Prove that for all $n \ge 1$ and $n \in \mathbb{Z}^+$, $a_n < (7/4)^n$.
- 6 (10%) Prove that every amount of money of 4 dollars or more can be formed using just two-dollar bills and five-dollar bills.
- 7 (10%) Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if a b = c d.
 - (a) Show that R is an equivalence relation.
 - (b) Find four pairs in [(1,5)].
- 8 (10%) Alice, a coffee lover, visits a coffee shop each day and orders one cup of coffee of either Expresso, Cappuccino, Latte, or Macchiato.
 - (a) In how many ways can she order one cup of coffee each day so that she enjoys each of the 4 types of coffee at least once during a (7-day) week.
 - (b) How many ways can she have if there are 7 types of coffee?
- 9 (10%) Prove that at a party where there are at least two people, there are two people who know the same number of other people there.
- 10 (10%) Construct deterministic finite-state automaton that recognize the set of (binary) bit string that contain an odd number of 1s and that end with at least three consecutive 0s.