逢甲大學100學年度碩士班招生考試試題編號:019 科目代碼:312

科目	統計學	週用	經濟學系、國際貿易學系、財 稅學系丙組、科技管理研究 所、合作經濟學系	時間	100 分鐘	
----	-----	----	---	----	--------	--

※請務必在答案卷作答區內作答。

共2頁 第1頁

I. Multiple Choice: Select the best answer

- 1. (6%) Consider you observe the income distribution of family from a random sample in Taiwan. You calculate mean, mode and median. What will you expect?
- a. median > mode > median
- b. mean > median > mode
- c. mode > median > median
- d. mean > mode > median
- 2. (6%) We use the t-distribution to calculate a confidence interval for the population mean μ. If we double the sample size from 10 to 20, the interval would become smaller because of
- a. the change in degrees of freedom.
- b. the change in standard error.
- c. both a and b.
- d. none of the above.
- 3. (6%) Suppose you were to toss a fair coin 100,000 times. What is the probability that you'll get heads between 49.5% and 50.5% of the time?
- a. 100%
- b. 95%
- c. 50%
- d. none of the above
- 4. (6%) Which statement(s) below is (are) correct?
- a. If two variables are independent, their correlation is zero.
- b. A correlation is always between 0 and 1.
- c. The p-value is the probability that the null hypothesis is correct.
- d. Both a. and b. are correct.
- 5. (6%) Two events, A and B, are such that P(A)=0.5, P(B)=0.3, and $P(A \cap B)=0.1$. Which statement(s) below is (are) correct?

a.
$$P(A | B) = \frac{1}{2}$$

b.
$$P(B \mid A) = \frac{1}{4}$$

b.
$$P(B \mid A) = \frac{1}{4}$$

c. $P(A \cup B) = \frac{2}{3}$

d. none of above is correct.

II. Problems

1. (20%) Consider the following simple regression without constant:

$$y_t = \beta x_t + u_t, t=1, 2$$

where $\beta = 2$ and x_i takes on fixed values $x_1 = 1$, $x_2 = 2$. u_i has the following discrete joint probability distribution for each value:

(u_t)	Probability
1	1/2
-1	1/2

- (a) What is the probability of y=3?
- (b) Find $Var(u_t)$ and $cov(u_1, u_2)$.
- (c) Find the sampling distributions of the following two estimators of β

$$b_{1} = \sum_{t=1}^{2} y_{t}$$
 and
$$b_{2} = \sum_{t=1}^{2} y_{t} x_{t}$$

$$\sum_{t=1}^{2} x_{t}^{2}$$

- (d) Show that $var(b_1) > var(b_2)$.
- 2. (10%) Let and $X_1, X_2, ..., X_n$ be a random sample from the geometric distribution with p.m.f. $f(x;\theta) = (1-\theta)^{x-1}\theta$, where x = 1,2,3,..., and $0 < \theta < 1$. Derive the maximum likelihood estimator of θ .
- 3. (10%) If E(X) = 17 and $E(X^2) = 298$, please determine
 - (a) the lower bound for P(10 < X < 24).
 - (b) the upper bound for P(|X-17|>16).
- 4. (10%) In developing countries in Africa and the Americas, let p_1 and p_2 be the respective proportions of women with nutritional anemia. Find an approximate 90% confidence interval for $p_1 p_2$ given that a random sample of $n_1 = 2100$ African women yielded $y_1 = 840$ with nutritional anemia and a random sample of $n_2 = 1900$ women from the Americas yielded $y_2 = 323$ women with nutritional anemia.
- 5. (10%) Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5$ be the order statistics of five independent observations from an exponential distribution that has a mean of $\theta = 3$. (You may leave the answers be functions of "exp".)
 - (a) Compute the probability that Y_4 is less than Y_5 .
 - (b) Determine $P(1 < Y_1)$.
- 6. (10%) Customers arrive at a travel agency at a mean rate of 11 per hour. Assuming that the number of arrivals per hour has a Poisson distribution, give the probability that more than 10 customers arrive in a given hour.