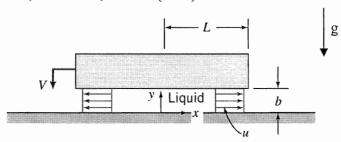

逢甲大學100學年度碩士班招生考試試題編號:015 科目代碼:310


科目	流體力學	適用系所	航太與系統工程學系熱流組	時間	100 分鐘
----	------	------	--------------	----	--------

※請務必在答案卷作答區內作答。

- 1. Answer the following questions: (25%)
 - (a) Give four restrictions of the Bernoulli equation.
 - (b) If the three components of velocity in a velocity field are given by $u = x^2 + y + z^2$, v = x y + z and $w = -2xz + y^2 + z$, determine whether the velocity field is incompressible, or neither.
 - (c) Explain two physical meanings of the stream function shortly.
- 2. A vane, with turning angle $\theta = 60^{\circ}$, is attached to a cart. The cart and vane, of mass $M = 65 \, kg$, roll on a level track. Friction and air resistance may be neglected. The vane receives a jet of water, which leaves a stationary nozzle horizontally at $V = 30 \, m/s$. The nozzle exit area is $A = 0.002 \, m^2$. Determine the velocity of the cart as a function of time, U(t). [$\rho_{H,O} = 999 \, kg/m^3$] (25%)

3. A Liquid Layer separates two plane surfaces as shown below. The lower surface is stationary; the upper surface moves downward at constant speed V., The moving surface has width w, perpendicular to the plane of the diagram, and w >> L. The incompressible liquid layer, of density ρ , is squeezed from between the surfaces. Assume the flow is uniform at any cross-section and neglect viscosity as a first approximation. Use a suitably chosen control volume to show that u=Vx/b within the gap, where $b=b_0-Vt$. Please find general expressions for (a) the velocity component in y direction; (b) the acceleration \vec{a} ; (c) the pressure p distribution; (d) the streaming function ψ ; (e) the velocity potential ϕ in this flowfield; (f) If the mass of the object floating on the liquid layer is 1000 kg, please estimate the magnitude of V (m/s) for the conditions: $\rho=1000$ kg/m³, g=9.81 m/s², b=1 mm, b=40 mm, b=1 mm, b=1

4. The Power, P, required to drive a fan is assumed to depend on fluid density, ρ , volume flow rate, Q, impeller diameter, D, and angular speed, ω . If a prototype of fan with D_I =200 mm delivers Q_I =0.4 m³/s of air at ω_I =2400 rpm, what volume flow rate conuld be expected for a model of fan with D_2 =40 mm at ω_2 =185 rmp? If the power required to drive the model is 0.01 W based on water tunnel test, estimate the power required of the prototype. (ρ_{air} =1.23 kg/m³, ρ_{water} =1000 kg/m³) (20%)