逢甲大學100學年度碩士班招生考試試題編號:008 科目代碼:203

	科目	经过度	適用	工業工程與系統管理學系A	時間	100 分鐘
			系所	組、B組		

※請務必在答案卷作答區內作答。

共2頁第1頁

- 1. (10%) Bowl I contains 2 white chips, bowl II contains 2 red chips, bowl III contains 2 white chips and 2 red chips, and bowl IV contains 3 white chips and 1 red chip. The probability of selection bowl I, II, III, or IV are 1/2, 1/4, 1/8, and 1/8, respectively. A bowl is selected using these probabilities, and a chip is then drawn at random. Find
- (a) P(W), the probability of drawing a white chip.
- (b) P(I | W), the conditional probability that bowl I had been selected, given that a white chip was selected.
- 2. (10%) Let X have the p.d.f.

$$f(x) = \begin{bmatrix} x, & 0 \le x \le 1, \\ c/x^3, & 1 \le x < \infty \\ 0, & \text{elsewhere.} \end{bmatrix}$$

Find the value of c.

- 3. (10%) Let X have the p.d.f. $f(x) = x^2/3$, -1< x < 2. Determine the p.d.f. of $Y = X^2$.
- 4. (10%) Let X_1 , X_2 and X_3 be independent random variables with p.d.f.s : $f_1(x_1) = 3x_1^2$, $0 < x_1 < 1$; $f_2(x_2) = 4x_2^3$, $0 < x_2 < 1$ and $f_3(x_3) = 6x_3^5$, $0 < x_3 < 1$. Find the p.d.f. of $Y = \text{maximum}(X_1, X_2, X_3)$.
- 5. (10%) Let X_1 , X_2 , ..., X_{20} denote a random sample of size 20 from the uniform distribution U(0, 1). Find, approximately, $P(X_1+X_2+...+X_{20} < 9.1)$.

$$Z \sim N(0, 1)$$
, $P(Z > z_{\alpha}) = \alpha \circ z_{0.2423} = 0.697$, $z_{0.10} = 1.282$, $z_{0.05} = 1.645$, $z_{0.025} = 1.96$

- 6. A TFT-LCD manufacturer suspects that its two plants produce different proportions of "grade A" panels. Samples of sizes $n_1 = n_2 = 300$ were randomly selected from a week's production of the two plants, and $y_1 = 180$ and $y_2 = 215$ panels were classified as grade A.
 - (1) (10%) What is the 95% confidence interval for $p_1 p_2$?
 - (2) (10%)Can you conclude that the two plants produce different proportions of "grade A" panels from (1)? Explain how.

- 7. Suppose that the weight of the apples from an orchard are distributed normally with mean μ = 150g and standard deviation σ =20 g.
 - (1) (5%)Let \bar{x} be the mean of a random sample of size n = 20 from these apples. Find the expected value and the variance of \bar{x} .
 - (2) (5%)If we randomly select 20 apples from the orchard and pack them into a box. Suppose the weight of the empty box ~N(100, 10²). Find the expected value of the total weight of the packed box and its variance.
 - (3) (5%)Suppose those apples are sold to a Japanese company for 20 years per gram. Find the expected value of the price for each apple and its variance.
- 8. (15%)Suppose that in one year the number of industrial accidents X follows a Poisson distribution with mean 3.0. If each accident leads to an insurance claim of \$5000, how much money would an insurance company need to keep in reserve to be 95% certain that the calamines are covered?