淡江大學 100 學年度碩士班招生考試試題 55-

系別: 電機工程學系控制系統組 電機工程學系機器人工程所

科目:控制系統

考試日期:2月28日(星期一) 第2節

本試題共 5 大題, 2 頁

1. Find a state space representation for the transfer function

$$G(s) = \left[\frac{-(12s+6)}{3s+34} \quad \frac{22s+23}{3s+34} \right]. (10\%)$$

- 2. Consider the control system shown in Fig. 1. The plant dynamics are described by the transfer function $G(s) = \frac{1}{s^2 + 3s + 2}$ If we assume a unity-feedback control system with a PID control $D(s) = K(1 + 2s + T_L/s)$
 - (i) Find the range of K for which this system is stable when $T_1 = 5$. (10%)
 - (ii) With no integral control, i.e., $T_I = 0$ find a sufficient value for the gain K so that the poles $s_{1,2}$ of the closed loop system have $\text{Re}(s_{1,2}) < -0.5$ and $|\text{Im}(s_{1,2})| < 2 (10\%)$
- 3. An open-loop mechanical system is governed by the second order system $\ddot{y} + 6\dot{y} + 5y = u(t)$, where u(t) is considered the input and y(t) is the output state.
 - (i) Take the Laplace transform (with zero initial conditions) to determine the open-loop transfer function between U(s) and Y(s). (10%)
 - (ii) Is the open-loop system stable? (10%)
 - (iii) Design a feedback control system with variable gain K which will remove the steady-state error when the system is subjected to a unit step input. (10%)
 - (iv) For what values of K is the closed-loop system stable? (10%)
- 4. For the electrical circuit shown in Fig. 2, find the transfer function from u(t) to y(t). (10%)
- Consider a robot manipulator described by Fig. 3. If gravity and friction are ignored the system has the dynamics

$$(J+ML^2)\ddot{\theta}=T(t), (1)$$

where θ is angular displacement, T is motor torque, J = 1, M = 8, and L = 2. To improve the performance we consider using the proportional-derivative controller

$$T(s) = K(\theta_r - \theta) - K_v \dot{\theta}(s), (2)$$

where K and K_{ν} are the proportional and derivative gains respectively.

- (i) Draw a unity feedback block diagram (not simplified) described by Eq. (1) and (2). (10%)
- (ii) Use the block diagram to find the transfer function $G(s) = \frac{\theta}{\theta_{r}}$ (10%)

Figure 1

Figure 2

