系別: 數學學系 科目:統 計 學 考試日期:2月28日(星期一)第3節 本試題共7大題,1頁 1.(20%)Let X_1, X_2, \dots, X_5 be a random sample from the $N(\mu, \sigma^2)$ distribution, consider the following 4 $$\text{statistics:} \ T_{1}=2X_{1}-X_{2} \ , \ \ T_{2}=\frac{X_{1}+X_{2}+X_{3}+X_{4}-X_{5}}{3} \ , \ \ T_{3}=\frac{X_{5}-X_{1}}{2} \ ,$$ $$T_4 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5},$$ - (a) Which of the 4 statistics are unbiased estimators of μ ? - (b) Find the variances of all the unbiased estimators of $\,\mu$, which one has the smallest variance? 2. (20%) Let X be a random variable with probability function under H_0 and H_1 given by | Х | 1 | 2 | 3 | 4 | 5 | 6 | |--------|------|------|------|------|------|------| | f o(x) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.95 | | fı(x) | 0.05 | 0.04 | 0.03 | 0.02 | 0.01 | 0.85 | - (a) Let $\alpha = 0.03$, use the Neymen-Pearson Lemma to find the most powerful test. - (b) Find the power of the most powerful test found in (a). 3.(10%) X_1, X_2, \dots, X_k is a random sample from the binomial (n, θ) distribution, find a MLE for θ^2 . 4. (10%)Let X_1, X_2 be i.i.d random variables with the following p.d.f. $f(\cdot; \theta), \theta > 0$: $f(0;\theta) = e^{-\theta}$, $f(1;\theta) = \theta e^{-\theta}$, $f(2;\theta) = 1 - e^{-\theta} - \theta e^{-\theta}$, and $f(x;\theta) = 0$ otherwise. Use the definition of sufficiency to show that $X_1 + X_2$ is not a sufficient statistic for θ . - 5. (20%)Let \overline{X} and \overline{Y} be the sample means of independent random samples of sizes n_1 and n_2 taken from normal populations with known variances σ_1^2 , σ_2^2 respectively. - (a) What is a $100(1-\alpha)$ % confidence interval for $\mu_1-\mu_2$? (所用符號都要定義清楚) - (b) If σ_1^2 , σ_2^2 are unknown but equal, $\sigma_1^2 = \sigma_2^2 = \sigma_2^2$, find an appropriate estimator for σ_2^2 . - 6. (10%) Let X_1, X_2, \dots, X_n be a random sample with p.d.f. given by $$f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, x > 0, \quad 0 < \theta < \infty$$ Derive the UMP(uniformly most powerful) test for testing $H_0: \theta \geq \theta_0$ against $H_1: \theta < \theta_0$ at level α . 7. (10%) X_1, X_2, \dots, X_n is a random sample from $N(\mu, \sigma^2)$ distribution, μ, σ^2 unknown. Find the UMVUE for $\frac{\mu}{\sigma}$.