招生學年度	100	招 生 類 別	碩士班
系 所 班 別	應用數學系 統計碩士班		
科 目	基礎數學		
注 意 事 項	本考科禁止使用掌上型計	含微積分及線性代	

1．(10%) Consider the following two functions defined on \mathbb{R}^{2} ．

$$
g(x)=x_{1}^{2}-x_{2}^{2}, \quad f(x)=x_{1}^{2}+x_{2}^{2}+\cos \left(x_{1}-x_{2}\right)
$$

where $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ ．Show that

$$
\lim _{\|x\| \rightarrow \infty} f(x)=\infty \text { but } \lim _{\|x\| \rightarrow \infty} g(x) \text { does not exist, }
$$

where $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ ．
2．(10%) Let f be a real－valued contimuous function defined on an open interval $I \subset \mathbb{R}$ such that $\forall y \in I$ the set

$$
\{x \in I: f(x) \leq f(y)\} \text { is a finite union of disjoint closed intervals. }
$$

Show that f is bounded below and attains its minimum．
3．Let $g(y)=-\frac{y^{2}}{2}+|y|$ be a function defined on \mathbb{R} ．
（a）(5%) Find the definite integral of g over the interval $[-1,1]$ ．
（b）(10%) Analyze and sketch the graph of the function g ，including the following issues：monotonicity，concavity，and relative extrema．

4．(20%) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=x^{3}+x y z+y^{2}-3 x$ ．Find all the stationary points，and determine whether they correspond to local extrema or saddle points based on the analysis of eigenvalues of the Hessian matrix of f ．

5．（ 10% ）Let A be an $m \times n$ real matrix of rank m ，and B an $n \times r$ real matrix of rank n ．Show that $\operatorname{rank}(A B)=m$ ．
6．(15%) Consider a vector－valued function η of three variables $\theta=\left(\mu_{0}, \mu_{\mathrm{i}}, \epsilon\right)^{\prime}$ that is defined by

$$
\eta(\theta)=\left(\mu_{0}, \mu_{1}, \log \frac{\epsilon}{1-\epsilon}-\frac{1}{2}\left(\mu_{1}^{2}-\mu_{0}^{2}\right)\right)^{\prime},
$$

where $\mu_{0}, \mu_{1} \in \mathbb{R}$ ，and $\epsilon \in(0,1)$ ．Find the 3×3 matrix $\frac{\partial \eta^{\prime}}{\partial \theta}$ ，where

$$
\frac{\partial \eta^{\prime}}{\partial \theta} \equiv\left(\begin{array}{c}
\frac{\partial \eta^{\prime}}{\partial \mu_{0}} \\
\frac{\partial \eta^{\prime}}{\partial \mu_{1}} \\
\frac{\partial \eta^{\prime}}{\partial \epsilon}
\end{array}\right)
$$

Also cletermine if $\frac{\partial \eta^{\prime}}{\partial \theta}$ is nonsingular for all θ in $\mathbb{R} \times \mathbb{R} \times(0,1)$ ．
7．Let A be an $n \times n$ positive clefinite matrix，V be an $m \times n$ matrix of rank $m<n$ ，and $P=I-A^{-1} V^{t}\left(V A^{-1} V^{t}\right)^{-1} V$ ．
（a）（5\％）Show that the matrix $V A^{-1} V^{t}$ is positive definite and hence is nonsingular．
（b）(10%) Show that $P^{2}=P$ and $(I-P)^{t} A P=O$ ．
（c）(5%) Define an inner product on \mathbb{R}^{n} so that P can be viewed as an orthogonal projection matrix onto its range space with respect to this inner product．

