國立東華大學招生考試試題 第1頁,共1頁

招	生感	學 年	三度	100	招	生	類	別	碩士班
系	所	班	別	應用數學系 統計碩士班					
科			目	基礎數學					
注	意	事	項	本考科禁止使用掌上型計算機;含微積分及線性代數					

1. (10%) Consider the following two functions defined on \mathbb{R}^2 .

$$g(x) = x_1^2 - x_2^2,$$
 $f(x) = x_1^2 + x_2^2 + \cos(x_1 - x_2),$

where $x = (x_1, x_2)$. Show that

$$\lim_{\|\boldsymbol{x}\|\to\infty} f(\boldsymbol{x}) = \infty \text{ but } \lim_{\|\boldsymbol{x}\|\to\infty} g(\boldsymbol{x}) \text{ does not exist,}$$

where $||x|| = \sqrt{x_1^2 + x_2^2}$.

2. (10%) Let f be a real-valued continuous function defined on an open interval $I \subset \mathbb{R}$ such that $\forall y \in I$ the set

 $\{x \in I : f(x) \le f(y)\}$ is a finite union of disjoint closed intervals.

Show that f is bounded below and attains its minimum.

- 3. Let $g(y) = -\frac{y^2}{2} + |y|$ be a function defined on \mathbb{R} .
 - (a) (5%) Find the definite integral of g over the interval [-1, 1].
 - (b) (10%) Analyze and sketch the graph of the function g, including the following issues: monotonicity, concavity, and relative extrema.
- 4. (20%) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = x^3 + xyz + y^2 3x$. Find all the stationary points, and determine whether they correspond to local extrema or saddle points based on the analysis of eigenvalues of the Hessian matrix of f.
- 5. (10%) Let A be an $m \times n$ real matrix of rank m, and B an $n \times r$ real matrix of rank n. Show that rank(AB) = m.
- 6. (15%) Consider a vector-valued function η of three variables $\theta = (\mu_0, \mu_1, \epsilon)'$ that is defined by

$$\eta(\boldsymbol{\theta}) = \left(\mu_0, \ \mu_1, \ \log \frac{\epsilon}{1-\epsilon} - \frac{1}{2}(\mu_1^2 - \mu_0^2)\right)',$$

where $\mu_0, \mu_1 \in \mathbb{R}$, and $\epsilon \in (0, 1)$. Find the 3×3 matrix $\frac{\partial \eta'}{\partial \theta}$, where

$$rac{\partial oldsymbol{\eta}'}{\partial oldsymbol{ heta}} \equiv \left(egin{array}{c} rac{\partial oldsymbol{\eta}'}{\partial \mu_0} \ rac{\partial oldsymbol{\eta}'}{\partial \mu_1} \ rac{\partial oldsymbol{\eta}'}{\partial \epsilon} \end{array}
ight).$$

Also determine if $\frac{\partial \eta'}{\partial \theta}$ is nonsingular for all θ in $\mathbb{R} \times \mathbb{R} \times (0, 1)$.

- 7. Let A be an $n \times n$ positive definite matrix, V be an $m \times n$ matrix of rank m < n, and $P = I A^{-1}V^t (VA^{-1}V^t)^{-1}V$.
 - (a) (5%) Show that the matrix $VA^{-1}V^{t}$ is positive definite and hence is nonsingular.
 - (b) (10%) Show that $P^2 = P$ and $(I P)^t A P = O$.
 - (c) (5%) Define an inner product on \mathbb{R}^n so that P can be viewed as an orthogonal projection matrix onto its range space with respect to this inner product.