

1．（10 points）State and Prove the Tchebichev＇s inequality．
2．（10 points）Let the j．p．d．f．of X, Y and Z be

$$
f(x, y, z)=\frac{6}{(1+x+y+z)^{4}}, \quad \text { if } x>0, y>0, z>0
$$

and 0 ，otherwise．Let $T=X+Y$ ．
Determine the conditional p．d．f．of X given $T=t$ ，for any $t>0$ ．
3．Let X and Y be independent $N(0 ; 1)$ random variables and $\lambda \in R$ a given constant． Define a new random variable T by

$$
T= \begin{cases}Y & \text { if } X<\lambda Y \\ -Y & \text { otherwise }\end{cases}
$$

（a）（10 points）Derive the p．d．f．of T ．
（b）（10 points）Calculate $E(T)$ and $\operatorname{Var}(T)$ ．
4．（15 points）Suppose that the family of p．d．f．＇s of the statistic $T,\{g(t ; \theta): \theta \in \Omega\}$ ， has MLR（monotone likelihood ratio）in t ．
Show that for any given number c ，if $\theta_{1}<\theta_{2}$ then $P_{\theta_{1}}(T>c) \leq P_{\theta_{2}}(T>c)$ ，that is $P_{\theta}(T>c)$ is a non－decreasing function of θ ．

5．（15 points）Let $X_{1}, \ldots, X_{n}, \ldots$ be i．i．d．as $U[0, \theta]$ ，let $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ ，the MLE（maximum likelihood estimator）of θ ，determine the limiting distribution of $n\left[\theta-X_{(n)}\right]$ ．

6．（15 points）Let X_{1}, \ldots, X_{n} be i．i．d．$N\left(\mu, \sigma^{2}\right)$ random variables，where $\sigma>0$ is known． Find the UMVUE（uniformly minimum variance unbiased estimator）of μ^{2} ，and in－ vestigate whether the Cramér－Rao lower bound is attained．

7．（15 points）One observation is taken on a discrete random variable X with p．d．f． $f(x ; \theta)$ ，where $\theta \in \Omega=\left\{\theta_{0}, \theta_{1}, \theta_{2}, \theta_{3}\right\}$ ．

Values of $f(x ; \theta)$											
x	2	3	4	5	6	7	8	9	10	11	12
θ_{0}	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.90
θ_{1}	.01	.009	.008	.007	.006	.005	.006	.007	.008	.009	.925
θ_{2}	.20	.10	.09	.08	.07	.06	.05	.05	.05	.05	.20
θ_{3}	.30	.09	.09	.08	.08	.07	.07	.06	.06	.05	.05

Derive a level $\alpha=0.05$ LRT（likelihood ratio test）for testing
$H_{0}: \theta \in\left\{\theta_{0}, \dot{\theta_{1}}\right\} \quad$ v．s．$H_{1}: \theta \notin\left\{\theta_{0}, \theta_{1}\right\}$ ．
Is the test you obtained a UMP level 0.05 test？

