第1頁,共4頁

- (1) Please explain the following keywords:
 - (a) Forward active (for BJT operation) (5%)
 - (b) Pinch-off (for FET) (5%)
 - (c) LED (5%)
 - (d) ECL (5%)
 - (e) Early effect (for BJT) (5%)
 - (f) EEPROM (5%)
 - (g) Body effect (for MOS) (5%)
 - (h) Slew rate (5%)
- (2) Consider the circuit shown in Figure 1. Assume each diode cut-in voltage is $v_r = 0.6$ V. Find R₁, R₂, R₃ such that I_{D1}= 0.2 mA, I_{D2}= 0.3 mA, I_{D3}= 0.5 mA. (10%)

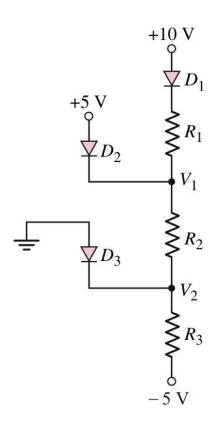


Figure 1

第2頁,共4頁

(3) Find the input resistance R_i for the circuits shown in Figure 2. The parameters of each transistor are $\beta = 100$ and $I_{CQ} = 0.26 \text{mA}$. (10%) ($V_T = 26 \text{mV}$)

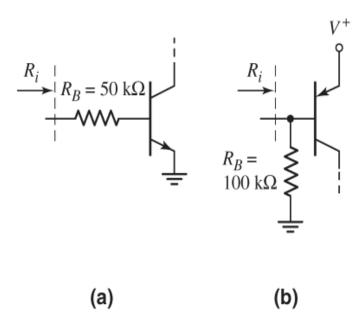


Figure 2

(4) What is the logic function implement by the circuit in Figure 3. (10%)

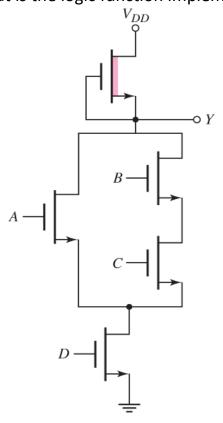


Figure 3

第3頁,共4頁

(5) Find the unity-gain frequency f_T of an FET. The parameters of an n-channel MOSFET are $K_n = 3.14$ mA/V², $V_{TN} = 0.4$ V, $C_{gd} = 10$ fF, and $C_{gs} = 30$ fF. Assume the transistor is biased at $V_{GS} = 0.8$ V. (where $K_n = \frac{W_{FR} C_{QN}}{2L}$) (10%)

(6) Consider the circuit shown in Figure 4. Please show that the close-loop transresistance gain is given by (10%)

$$A_{zf} = \frac{v_o}{l_l} = \frac{+\left(A_z + \frac{r_R R_C}{R_F}\right)}{\left(1 + \frac{R_C}{R_F}\right)\left(1 + \frac{r_R}{R_F}\right) - \frac{1}{R_F}\left(A_z + \frac{r_R R_C}{R_F}\right)}$$

where
$$A_{\rm Z}=-g_{m}r_{\rm R}R_{\rm C}=-h_{\rm FE}R_{\rm C}$$

Figure 4

第4頁,共4頁

(7) For the amplifier in Figure 5, determine (a) the closed-loop voltage gain

$$A_v = \frac{v_o}{v_I}$$
 , (b) v_o for $v_I = 0.2 \, \mathrm{V}$. (10%)

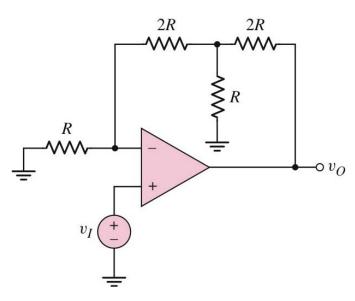


Figure 5