國立中正大學100學年度碩士班招生考試試題

系所別:光機電整合工程研究所

第 3 節

第1頁,共2頁

科目:電磁學

- 1. A point charge q is imbedded at the center of a sphere of linear dielectric material with susceptibility χ_a and radius R.
 - (a) Find the electric field E(r) and the Polarization P(r) for $r \le R$. (8%)
 - (b) Find the volume bound charge density $\rho_b(r)$ for $r \le R$. (6%)
 - (c) What is surface bound charge density $\sigma_b(r)$ for r = R? (3%)
 - (d) What is the total bound charge at the surface (r = R)? (4%)
 - (e) What is the total bound charge at the center of the sphere (r = 0)? (4%)
- 2. Consider two infinite straight line with line charge density λ , a distance d apart, moving along at a constant speed ν , see figure in below.
 - (a) Apply Gauss's law to find the electric field on one of the wire. (4%)
 - (b) What is the electrical force per unit length between two wires? (2%)
 - (c) Apply Ampere's law to find the magnetic field at each wire and at the position r located between two wires (r < d and r is the distance from the top wire).</p>
 (8%)
 - (d) Find the magnetic force per unit length between two wires (4%)
 - (e) How fast would v have to be in order for the magnetic attraction to balance the electrical repulsion? (4%)
 - (f) Work out the actual number of v. Is this a reasonable sort of speed? (3%)

國立中正大學100學年度碩士班招生考試試題

系所別:光機電整合工程研究所

第2頁,共2頁

科目:電磁學

第 3 節

- 3. A plane wave originating in medium 1 (ϵ_1 , $\mu_1 = \mu_0$, $\sigma_1 = 0$) is incident normally on a plane interface with medium 2 ($\epsilon_2 \neq \epsilon_1$, $\mu_2 = \mu_0$, $\sigma_2 = 0$). Under what condition will the electric field at the interface be a maximum? A minimum? Where ϵ , ϵ , and ϵ is permittivity, permeability, and conductivity of medium, respectively. (10%)
- 4. The angle $\theta_{B\parallel}$ is known as the Brewster angle of no reflection for the case of parallel polarization. A solution for this equation always exists for two contiguous nonmagnetic media. Thus if $\mu_1 = \mu_2$, a reflection-free condition is obtained when the angle of incidence in medium 1 equals the Brewster angle $\theta_{B\parallel}$.
- (1) Prove that $\sin \theta_{B\parallel} = \frac{1}{\sqrt{1 + (\epsilon_1/\epsilon_2)}}$ (10%)
- (2) If the dielectric constant of glass is 8. Determine the Brewster angle for parallel polarization and the corresponding angle of transmission. (10%)
- 5. Without deriving any new equations, roughly sketch the electric and magnetic field lines in a typical transverse plane of a circular waveguide.
- (1) For TM₁₁ mode (5%)
- (2) For TE₀₁ mode (5%)
- (3) Determine the cutoff frequencies for TM₁₁ and TE₁₀ modes in an air-filled circular waveguide of radius a. (10%)