國立中正大學100學年度碩士班招生考試試題系所別:機械工程學系-甲組、乙組、丙組 科目:工程數學

第1節

第1頁,共2頁

1. (20%)Please provide the general solutions of the following differential equations:

(a) (10%)
$$y'' + 10y' + 25y = 0$$

(b) (10%)
$$3y' + y = (0-2x)y^4$$

2. (15%) Lapalce Transform

(a) (5%) Find the inverse Laplace transform of the following:

$$F(s) = \frac{32}{s(s+4)(s+8)}$$

(b) (10%) Solve the following system using Laplace Transform:

$$x'' - 2x' + 3y' + 2y = 4$$

$$2y' - x' + 3y = 0$$

$$x(0) = x'(0) = y(0) = 0$$

3. (15%) Vector

- (a) (7%) Consider $\varphi(x, y, z) = z \sqrt{x^2 + y^2}$. The level surface $\varphi(x, y, z) = 0$ is the cone $z = \sqrt{x^2 + y^2}$. Find a normal vector and the tangent plane at $(1, 1, \sqrt{2})$.
- (b) (8%) Let C be the curve consisting of the quarter-circle $x^2 + y^2 = 1$ in the x, y-plane from (1,0) to (0,1), then the horizontal line segment from (0,1) to (2,1). Let $\vec{F}(x,y) = 4x\vec{i}$, Compute $\int \vec{F} \cdot d\vec{R}$.

4. (20%) Matrices

(a) (4%) Consider a linear system

$$x_1 + 2x_2 + 5x_3 = 0$$

$$2x_1 + 3x_2 + 8x_3 = -5$$

$$-x_1 + x_2 + 2x_3 = 4$$

The equations of the system can be written in the form of matrix as AX = B. Find the rank of the augmented matrix of the system (A|B)

- (b) (5%) Find the inverse of the coefficient matrix A and use the inverse matrix A^{-1} to solve the equations.
- (c) (7%)Determine the eigenvalues and eigenvectors of the following matrix M

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

(d) (4%) Diagonalize matrix M

國立中正大學100學年度碩士班招生考試試題

系所別:機械工程學系-甲組、乙組、丙組

科目:工程數學

第1節

第2頁,共2頁

5. (10%) The periodic square wave or periodic pulse is shown in Figure. The wave is the periodic extension of the function f:

$$f(x) = \begin{cases} 0, & -\frac{1}{2} < x < -\frac{1}{4} \\ 1, & -\frac{1}{4} < x < \frac{1}{4} \\ 0, & \frac{1}{4} < x < \frac{1}{2} \end{cases}$$

- (a) (5%) Please explain the Fourier series of the function f
- (b) (5%) Find the frequency spectrum of the function f

6. (20%) Solve the equation u(x, t) subject to the given conditions.

(a) (10%)

Wave equation:
$$k \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
,

$$0 < x < L$$
, $t > 0$

Conditions:

$$u(0,t)=0$$
, $u(L,t)=0$

$$u(x,0)$$
 as specified in Figure.

$$\frac{\partial u}{\partial t}\Big|_{t=0} = 0$$

(b) (10%) The transverse displacement u(x, t) of a vibrating beam of length L is determined from a fourth-order partial differential equation

$$a^2 \frac{\partial^4 u}{\partial x^4} + \frac{\partial^2 u}{\partial t^2} = 0, \qquad 0 < x < L, \qquad t > 0.$$

If the beam is simply supported, as shown in Figure, the boundary and initial conditions are

$$u(0,t) = 0$$
, $u(L,t) = 0$, $t > 0$

$$\frac{\partial^2 u}{\partial x^2}\bigg|_{x=0} = 0, \quad \frac{\partial^2 u}{\partial x^2}\bigg|_{x=L} = 0, \quad t > 0$$

$$u(x,0) = f(x), \quad \frac{\partial u}{\partial t}\Big|_{t=0} = g(x), \quad 0 < x < L$$

Hint: For convenience use λ^4 instead of λ^2 when separating variables.