國立中正大學100學年度碩士班招生考試試題

系所別: 電機工程學系-信號與媒體通訊組 通訊工程學系-通訊系統組、網路通訊甲組

第/頁,共4頁

第1節

- 一、單選題(共30分):每題有五個選項,其中只有一個<u>最適當</u>的答案,每題答 對得5分;未作答、答錯或答多於一個選項者,該題以0分計算。
- 1. Consider the discrete-time complex exponential $x[n] = e^{j2\pi n/N}$, N is a positive integer. Which of the following statements about x[n] is false?
 - (a) Its fundamental period is N.
 - (b) It is orthogonal to $e^{j2\pi \cdot 2n/N}$.
 - (c) It is orthogonal to $e^{j2\pi \cdot 3n/N}$.
 - (d) Its discrete-time Fourier transform is $X(j\omega) = 2\pi \delta(\omega \frac{2\pi}{N})$.
 - (e) Its discrete-time Fourier transform is a periodic function.
- 2. Suppose that continuous-time x(t) is a periodic signal with period T, and, its associated Fourier series coefficients are $a_k = \frac{1}{T} \int_0^T x(t) \, e^{j2\pi kt/T} \, dt$, $\forall k$. Which of the following statements about x(t) is false?
 - (a) It can be written as $\sum_{k=-\infty}^{\infty} a_k e^{j2\pi kt/T}$.
 - (b) Its spectrum can be expressed as $\sum_{k=-\infty}^{\infty} 2\pi \ a_k \ \delta \left(\omega \frac{2\pi}{T} k\right)$.
 - (c) Its autocorrelation is defined by $R_x(\tau) = \lim_{x \to \infty} \int_{t=-\infty}^{\infty} x(t)x^*(t-\tau) dt$.
 - (d) Its autocorrelation is equal to $R_x(\tau) = \sum_{k=-\infty}^{\infty} |a_k|^2 e^{j2\pi k\tau/T}$.
 - (e) Its time-averaged power is equal to $\sum_{k=-\infty}^{\infty} |a_k|^2$.
- 3. Suppose that $x(t) = x_c(t)\cos(2\pi f_0 t) x_s(t)\sin(2\pi f_0 t)$ is a real-valued bandpass signal at center (or carrier) frequency f_0 . Which of the following statements about x(t) is false?
 - (a) Its lowpass equivalent signal is $x_c(t) + j x_s(t)$.
 - (b) Its corresponding analytic signal $x(t) + j \hat{x}(t)$, where $\hat{x}(t)$ denotes the Hilbert transform of x(t).

多所则: 電機工程學系-信號與媒體通訊組

通訊工程學系-通訊系統組、網路通訊甲組 科目:通訊原理

第1節

第2頁,共4頁

- (c) Its lowpass equivalent signal can be obtained by $x_t(t) = LP\left\{2x(t)\cos(2\pi f_0 t)\right\} j LP\left\{2x(t)\sin(2\pi f_0 t)\right\}, \text{ where } LP\left\{\cdot\right\}$ denotes the lowpass filtering.
- (d) It is related to its analytic signal z(t) by $x(t) = \frac{1}{2} \left[z(t) + z^*(t) \right]$.
- (e) Its Hilbert transform produces $\hat{x}(t) = x_c(t)\sin(2\pi f_0 t) x_s(t)\cos(2\pi f_0 t)$.
- 4. An *i.i.d.* discrete time random process X_n has mean m and variance σ^2 .

Which of the following statements is true?

- (a) The random variable X_n is Gaussian distributed.
- (b) The mean of random variable $Y = \sum_{n=1}^{N} X_n$ is m.
- (c) The variance of random variable $Y = \frac{1}{N} \sum_{n=1}^{N} X_n$ is σ^2
- (d) The process X_n is wide-sense stationary.
- (e) The process $Z_n = X_n X_{n-1}$ is also an *i.i.d.* discrete time random process.
- 5. Which of the following statements about bandwidth efficiency is true?
 - (a) The bandwidth efficiency of the double sideband suppressed carrier (DSB-SC) AM is higher than that of conventional AM
 - (b) The bandwidth efficiency of the conventional AM is higher than that of FM
 - (c) The bandwidth efficiency of the single sideband AM is the same as that of the conventional AM.
 - (d) The bandwidth efficiency of binary PSK is higher than that of binary ASK
 - (e) The bandwidth efficiency of binary PSK is the same as that of quaternary PSK
- 6. Let N(t) be a zero-mean white Gaussian noise with power spectral density $N_0/2$. Which of the following statements is true?

(a)
$$\int_0^1 N(t) dt = 0.$$

- (b) The power of N(t) is finite.
- (c) The power spectral density of N(t) is $\frac{N_o}{2}\delta(t)$ for some N_o .
- (d) If N(t) is passed through an LTI system, the output of the LTI system is

國立中正大學100學年度碩士班招生考試試題

系所別: 電機工程學系-信號與媒體通訊組 通訊工程學系-通訊系統組、網路通訊甲組

科目:通訊原理

第1節

第3頁,共4頁

also a white Gaussian random process.

(e) If N(t) is sampled at t_1 and t_2 , then $N(t_1)$ and $N(t_2)$ are independent Gaussian random variables

二、計算題(共40分):

- 1. (10 分) Consider the three waveforms $\psi_n(t)$ shown in Fig. 1.
 - (a) Show that the waveforms are orthogonal.
 - (b) Express the waveform y(t) as a weighted linear combination of $\psi_1(t)$, $\psi_2(t)$, and $\psi_3(t)$, if

$$y(t) = \begin{cases} -1, & 0 \le t \le 1 \\ 1, & 1 \le t \le 3 \\ -1, & 3 \le t \le 4 \end{cases}$$

and determine the weighting coefficients.

Figure 1: Three waveforms

2. (10 分) Consider the signal detector with an input

$$r = \pm A + n$$

where +A and -A occur with equal probability and the noise n is random with the Laplacian probability density function

$$p(n) = \frac{1}{\sqrt{2\sigma}} e^{-|n|\sqrt{2}/\sigma}.$$

Determine the probability of error as a function of parameters A and σ .

國立中正大學100學年度碩士班招生考試試題

系所別: 電機工程學系-信號與媒體通訊組

通訊工程學系-通訊系統組、網路通訊甲組

第1節

第4頁,共4頁

科目:通訊原理

- 3. (10 \Re) The message signal $m(t) = 10 \operatorname{sinc}(500t)$ frequency modulates the carrier $c(t) = 100 \cos(2\pi f_c t)$. The modulation index is 5.
 - (a) Write an expression for the modulated signal.
 - (b) What is the maximum frequency deviation of the modulated signal?
 - (c) What is the power content of the modulated signal?
 - (d) Find the bandwidth of the modulated signal?
- 4. (10 \Re) The random process X(t) is defined by $X(t) = X \cos(2\pi f_0 t)$ where X is a zero-mean standard Gaussian random variable.
 - (a) Find the time and ensemble average of X(t)
 - (b) Find the autocorrelation function $R_X(t+\tau,t)$ of X(t). Is X(t) stationary? Is it cyclostationary?
 - (c) Find the power-spectral density of X(t).
- 三、名詞解釋(共30分):請利用數學符號、數學式、圖表或其他專業術語寫兩 段短文(每段至多500字),分別解釋下列兩個名詞。
- 1. (15 分) Optimal Detection of BPSK Signals
- 2. (15 分) Sampling Theory