第2節

第一頁,共一頁

- 1. (10pt.) Write a routine in C language to fetch the m-th element of a singly linked list. You must consider empty or any other possible error cases.
- 2. (20pt.) Write a routine in C language to interchange the m-th and n-th elements of a singly linked list. You must consider empty or any other possible error cases.
- 3. (20pt.) The Taiwan Lotto 6/49 enables users to choose six numbers from one to forty-nine. Please use C programming language to write the following programs:
- (a) Write a program to output a set of six random numbers chosen in this range.
- (b) Write a program to enable users to input target n numbers in need, $0 \le n \le 6$.
- 1. If n is smaller than six, output target n numbers and (6-n) random numbers chosen by this program.
 - 2. If n is equal to six, directly output target n numbers.
- 4. In a packet switching system, the server uses the formula shown below to determine the priority of packets waiting for processing.

$$Priority = \frac{Packet waiting time}{Packet length}$$

Table 1 shows an example. The processing order of packets is Packet 2, Packet 3, Packet 1.

Table 1			
Packet ID	Packet waiting time (msec)	Packet length (bytes)	Priority
1	100	100	1
2	300	100	3
3	400	200	2

In order to write a program to determine a list of waiting packets in priority sequence, answer the following questions.

- (7 pt) (a) Use pseudocode to define data structures used in your program and explain your reason for such design.
- (18 pt) (b) Use pseudocode to write a program to determine the list.
- 5. Consider a directed graph to represent a network. Answer the following questions.
- (5 pt) (a) Use pseudocode to define a data structure for an adjacency matrix and explain your design.
- (5 pt) (b) Draw three directed graphs-- G₁, G₂, and G₃ to give examples for a strongly connected graph, a weakly connected graph, and a disjoint graph. Each graph in your example should have at least 5 nodes. Use your definition in 5(a) to write the adjacency matrices of those examples.
- (15 pt) (c) Given a directed graph G. Use pseudocode to write a program to determine if G is a strongly connected, weakly connected, or disjoint graph.