國立中正大學100學年度碩士班招生考試試題

系所別:電機工程學系-信號與媒體通訊組、晶片系統組 科目:計算機組織 計算機、機電工程組

第1節

第/頁,共2頁

1. (10%) True or False

- a. We can use 8-bit signed 2's complement to express at most 255 different numbers.
- b. In CPU design, the pipelining technique can effectively reduce both clock cycle time and latency.
- c. Both pipelining and instruction-level parallelism (ILP) techniques can increase system throughput.
- d. In memory hierarchy design, the level of the memory hierarchy closest to the CPU is smaller but faster, so L1 cache is smaller and faster than L2 cache.
- e. We consider "Temporal Locality" in cache design because items near those accessed recently are likely to be accessed soon.
- 2. (10%) The floating-point format to be used in this problem is an 8-bit IEEE 754 normalized format with 1 sign bit, 4 exponent bits, and 3 fraction bits. It is identical to the 32-bit and 64-bit formats in terms of the meaning of fields and special encodings. The exponent field employs an excess-7 coding (Bias = 7). The bit fields in a number are (sign, exponent, fraction). Assume that we use unbiased rounding to the nearest even specified in the IEEE floating point standard.
 - a. Encode the binary number, 0.0011011, into the 8-bit IEEE format.
 - b. Decode the number in 8-bit IEEE format, 11010101, into the decimal value.
- 3. (18%) What are structure, data, and control hazards? For each hazard, you need to explain with an example and propose at least two techniques to eliminate the hazard.
- 4. (12%) Using the code below, list all of the dependence types (RAW, WAR, WAW) between the instructions.

國立中正大學100學年度碩士班招生考試試題系所別:電機工程學系-信號與媒體通訊組、晶片系統組科目:計算機組織計算機、機電工程組

第1節

第2頁,共2頁

- 5. (14%) P_1 is a one address accumulator-based machine while P_3 is a three address machine. P_1 and P_3 are conventional computers each with 16 general-purpose registers R0:R15 for data and address storage. All two processors have instructions with the (assembly language) opcodes LOAD, STORE, ADD, SUB, MUL, and DIV to implement the operations +, -,×, and /, respectively. Using as few instructions as you can, write two programs for P_1 and P_3 machines to evaluate the following arithmetic expression: $X := (A/B+C\times D)/(A-B)$.
- 6. (10%) G_i and P_i are called the generate and propagate, respectively, which are defined by the following logic equations:

 $\begin{array}{ll} G_i \!\!=\!\! x_i y_i & P_i \!\!=\!\! x_i \!\!+\!\! y_i & (i \!\!=\!\! 0,\! 1,\! 2......,\! n \!\!-\!\! 1) \; (C_{in} \!\!=\!\! 0) \\ \text{Give the circuit equation of carry C_0 and C_1 for 3-bit carry lookahead adder.} \end{array}$

- 7. (16%) Booth's algorithm and Modified Booth's Algorithm a. Calculate 11101110 X 11001110 by Booth's algorithm.
 - b. Find the values of P_0, P_2, P_4 and P_6 by Modified Booth's algorithm.

multiplicand	Y	11101110	:
multiplier	X	11001110	
P_0			
P_2			
P_4			
P_6			
P	$= P_0 + P_2$	$+P_{4}+P_{6}$	

8. (10%) The performance of a 500MHz microprocessor P is measured by executing 10,000,000 instructions of benchmark code, which is found to take 0.25s. What are the values of CPI and MIPS for this performance experiment?