第 | 頁,共3頁

科目:機率與統計

- 1. (8%) A fair coin is tossed until the same result occurs twice. Give the probability of an odd number of tosses.
- 2. (12%) If $X|Y \sim \text{binomial } (Y, p), Y|\Lambda \sim \text{Poisson } (\Lambda), \text{ and } \Lambda \sim \text{exponential } (\beta), \text{ i.e. } f_{\Lambda}(\lambda) = \frac{1}{\beta} e^{-\lambda/\beta}.$
 - (a) (7%) Find the pmf of Y and the name of this pmf.
 - (b) (5%) Compute E(X).
- 3. (12%) Consider the bivariate negative binomial distribution with pmf

$$P(X=x,Y=y)=\frac{(x+y+k-1)!}{x!y!(k-1)!}p_1^xp_2^y(1-p_1-p_2)^k,$$

where $x, y = 0, 1, 2, \dots$; $k \ge 1$ is an integer; $p_1, p_2 \in (0, 1)$; and $p_1 + p_2 < 1$.

- (a) (5%) Find the pmf of U = X + Y.
- (b) (7%) Find the moment generating function of U.
- 4. (18%) Let X_1, \dots, X_n be independent $N(0, \theta)$.
 - (a) (4%) Find the MLE of θ^2 .
 - (b) (6%) Find the MVUE of θ^2 .
 - (c) (5%) Find a UMP test for testing $H_0: \theta \leq \theta_0$ vs. $H_A: \theta > \theta_0$.
 - (d) (3%) For testing $H_0: \theta \leq 3$ vs. $H_A: \theta > 3$, if a sample of size n is 10 with $\sum x_i^2 = 54$, find the P-value for this test referring to the following values: $P(\chi_9^2 > 6) = 0.7399$, $P(\chi_{10}^2 > 6) = 0.8153$, $P(\chi_9^2 > 18) = 0.03517$, $P(\chi_{10}^2 > 18) = 0.05496$.

科目:機率與統計

第2節

5. (15%) X is said to have a Maxwell distribution if its density function is given by:

$$f(x|\theta) = (2/\pi)^{1/2} \theta^{3/2} x^2 exp(-x^2 \theta/2), \ x > 0.$$

Let $X_1, X_2 \cdots, X_n$ be iid random samples from a Maxwell distribution with parameter θ . You can use the fact that $U = \sum_{i=1}^{n} X_i^2$ is a complete sufficient statistic for this family.

- (a) (3%) Find the MLE of θ .
- (b) (5%) Show that θU has a $\chi^2(3n)$ distribution.
- (c) (7%) Find the UMVUE of θ .
- 6. (27%) Let X_1, X_2, \ldots, X_n be a random sample of size n from the distribution $U[0, \theta]$.

$$f(x) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \le x \le \theta, \\ 0 & \text{elsewhere} \end{cases}$$

- (a) (6%) Find the MVUE of θ .
- (b) (4%) Find the variance of MVUE of θ .
- (c) (4%) Compare the results in (b) with the Rao-Cramer's lower
- (d) (7%) Let $X_{(1)}, \dots, X_{(n)}$ denote the order statistics. The range is defined as $R = X_{(n)} - X_{(1)}$ and the mid-range is defined by $V = (X_{(1)} + X_{(n)})/2$. Find the joint pdf of $X_{(1)}$ and $X_{(n)}$.
- (e) (3%) Based on the results in (d), find the marginal pdf of R.
- (f) (3%) If now $\theta = 1$, based on the results in (e), find E(R).

國立中正大學100學年度碩士班招生考試試題

系所別:數學系統計科學

第2節

第3頁,共3頁

科目:機率與統計

7. (8%) A scatter plot of y versus x for 30 subjects reveals no isolated cases and suggests that the relationship between y and x is linear. Computations yield, given the following information.

•
$$\bar{x} = 60$$
, $\sum_{i=1}^{30} (x_i - \bar{x})^2 = 400$, $\bar{y} = 100$, $\sum_{i=1}^{30} (y_i - \bar{y})^2 = 900$, and $r = -0.6$.

• One of the subjects, Ann has x = 50 and y = 114.

Answer the following questions.

- (a) (5%) Obtain the equation of the regression line.
- (b) (3%) Compute Ann's residual.