第1頁,共|頁

科目:線性代數

For the following problems, \mathbb{R} denotes the field of real numbers. A real vector space is a vector space over \mathbb{R} .

- (1) (12 Points) Let $V = \{(a, b, c, d) \in \mathbb{R}^4 : a 2b + 3c 4d = 0\}$. Find the dimension of V as a real vector space by finding a basis for it.
- (2) (20 Points) Let $S = \{1, 2, 3\}$ and let V be the set of all the functions from S to \mathbb{R} . Define

$$(f+g)(x) = f(x) + g(x),$$

$$(af)(x) = af(x),$$
 where $x \in S$,

for all $f, g \in V$ and $a \in \mathbb{R}$.

- (a) Show that V is a real vector space.
- (b) Define the functions χ_1 , χ_2 and χ_3 in V as follows:

Show that $\{\chi_1, \chi_2, \chi_3\}$ is a basis for V over \mathbb{R} .

(c) Suppose given

Is the set $\{f, g, h\}$ a basis for V over \mathbb{R} ?

- (3) (15 Points) Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for the vector space V over \mathbb{R} . Let w_1, w_2, \ldots, w_n also be elements in V. Let $T: V \longrightarrow V$ be the linear transformation sending v_i to w_i for each i. Show that T is an isomorphism if and only if $\{w_1, w_2, \ldots, w_n\}$ is a basis for V over \mathbb{R} .
- (4) (20 Points) Let $a_1, a_2, \ldots, a_n \in \mathbb{R}$.
 - (a) Show that

$$\det\begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i).$$

- (b) For $i=1,2,\ldots,n$, let $v_i=(1,a_i,a_i^2,\ldots,a_i^{n-1})$ be vectors in \mathbb{R}^n . Give a sufficient and necessary condition for v_1,v_2,\ldots,v_n to be linear independent over \mathbb{R} .
- (5) (18 Points) Find the Jordan form of

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

over R.

(6) (15 Points) Is it possible to find a 4×4 symmetric matrix with real entries such that its characteristic polynomial is $x^4 - 1$? Give your reasoning.