第1節

第1頁,共1頁

- 1. a. (5 pts) Let $\beta \in \mathbb{R}$ and A be a nonempty subset of \mathbb{R} . Write down the definition of β is the supremum of A.
 - b. (10 pts) Suppose that $f:[a,b]\mapsto\mathbb{R}$ is an increasing continuous function. Show that $\sup f(E)=f(\sup E)$, where E is a nonempty subset of [a,b], and $\sup E$ and $\sup f(E)$ represent the supremum of E and f(E), respectively.
- 2. (10 pts) Suppose that $f:[a,b] \mapsto \mathbb{R}$ is continuously differentiable and 1-1 on [a,b].

 Show that

$$\int_a^b f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(\xi) d\xi = bf(b) - af(a).$$

3. Let $f:[a,b]\mapsto \mathbb{R}$ be a function. Define

$$V(f, P) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

for each partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b]. The variation of f is defined by $Var(f) = \sup\{V(f, P) \mid P \text{ is a partition of } [a, b]\}.$

- a. (6 pts) Show that if $Var(f) < \infty$, then f is a bounded function on [a, b].
- b. (9 pts) Show that the variation of $f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \in (0, \frac{2}{\pi}] \\ 0 & \text{if } x = 0 \end{cases}$ is not finite.
- c. (10 pts) Suppose f' exists and is integrable on [a, b]. Prove that

$$Var(f) = \int_a^b |f'(x)| dx.$$

- 4. a. (10 pts) Let $\alpha \in (0, 1]$, and $\delta \geqslant -1$. Prove that $(1 + \delta)^{\alpha} \leqslant 1 + \alpha \delta$.
 - b. (10 pts) Show that

$$\lim_{n\to\infty}\int_1^5\left(1+\frac{x}{n}\right)^ne^{-x}\,dx\,=\,4.$$

- 5. a. (10 pts) Is the function $f(x,y) = \sqrt{|xy|}$ differentiable at (0,0)? Prove your assertion.
 - b. (10 pts) Suppose $f: \mathbb{R}^2 \mapsto \mathbb{R}$ satisfies

$$|f(x_1, y_1) - f(x_2, y_2)| \le 2011((x_2 - x_1)^2 + (y_2 - y_1)^2)$$

for all $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. Is f a differentiable function in \mathbb{R}^2 ? Prove your assertion.

6. (10 pts) Find extrema of $f(x,y) = x^2 + xy + 4y^2$ on Ω , where Ω is the region bounded by the triangle with vertices (1,0), (1,2), and (3,0).