編號:

88

國立成功大學一○○學年度碩士班招生考試試題

共 3 頁,第/頁

系所組別: 化學工程學系甲組

考試科目: 化工熱力學

考試日期:0219,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- 1. (16%) For a gas obeys van der Waals equation $\left(P + \frac{a}{v_m^2}\right)(V_m b) = RT$
 - (a) Show that $\left(\frac{\partial U}{\partial v_m}\right)_T = \frac{a}{v_m^2}$ (7 %)
 - (b) Suppose that a gas obeys the van der Waals equation and that two parameters, a and b, have values of 0.1408 Pa m⁶ mol⁻², and 0.0391 dm³ mol⁻¹, respectively. If 2.0 mol of the gas at 25 °C is reversibly and isothermally compressed from an initial volume of 2.00 dm³ to a final volume of 0.500 dm³, calculate q, w, ΔU and ΔH. (9 %)

2. (17%)

- (a) Calculate the heat of combustion for 1 mol of methane burnt completely in air at 25°C. (5%)
- (b) What is the maximum temperature that can be reached by the combustion of methane with 20% excess in air? Both the methane and the air enter the burner at 25°C. (12%)

Given:

# # W W W W W W W W W W W W W W W W W W	ΔH_f° (25°C)	$C_{\rho}^{o^*}$	
	(kJ mol ⁻¹)	A (J K ⁻¹ mol ⁻¹)	$10^3 B (\mathrm{J K^{-2} mol^{-1}})$
CH ₄ (g)	-74.52	14.15	75.50
$H_2O(g)$	-241.82	30.54	10.29
$H_2O(1)$	-285.83	75.48	0
$CO_2(g)$	-393.51	44.22	8.79
$O_2(g)$	0	29.96	4.18
$N_2(g)$	0	28.58	3.76

^{*:} $C_P^o = A + BT$ is used over the working temperature region.

編號:

國立成功大學一○○學年度碩士班招生考試試題

共3頁,第2頁

系所組別: 化學工程學系甲組

考試科目: 化工熱力學

88

考試日期:0219、節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

3. (16%) dH = -udu = TdS + VdP For isentropic ideal gas flow in a tube with a throat, please derive to obtain the following three equations (1)-(3)

(1)
$$u_2^2 - u_1^2 = -2 \int_{p_1}^{p_2} V dP = \frac{2\gamma P_1 V_1}{\gamma - 1} \cdot \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} \right]$$

(2)
$$u_2^2 = \gamma P_2 V_2$$

$$(\text{for } u_1 = 0)$$

(3)
$$\frac{P_2}{P_1} = \left(\frac{2}{\gamma + 1}\right)^{\gamma/\gamma - 1}$$

(the pressure ratio at the throat)

[Note] For isentropic ideal gas, $PV^{\gamma} = \text{constant}$, also, $u_2^2 = c^2 \equiv -V^2 \cdot \left(\frac{\partial P}{\partial V}\right)_S$ where c is the speed of sound.

4. (18%) Answer False (F) or true (T). For those false, please give your explanation. (3% each)

- (a) entropy change of the system is always non-negative.
- (b) entropy change of mixing is always non-negative.
- (c) Carnot engine is the only reversible heat engine.
- (d) Water flows in a pipe at 3 m/s. A valve at the end of the pipe is suddenly closed. Then, the pressure in the pipe is dropped.

(e)
$$\lim_{P\to 0} V^R = 0$$

This may interpret the H vs. S diagram of a turbine from state 1 to state 2.

編號:

88

國立成功大學一○○學年度碩士班招生考試試題

共、頁、第3頁

系所組別: 化學工程學系甲組

考試科目: 化工熱力學

考試日期:0219·節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

5. (33%) Consider a binary system consisting of both vapor and liquid phases in equilibrium. Please answer the following questions:

(a) First consider the liquid phase. Let x_1 and x_2 be the respective mole fractions of component 1 and 2. At constant temperature and pressure, the molar excess Gibbs free energy G^E is given by

$$G^E = RTx_1x_2^2.$$

Find the partial excess Gibbs free energy \overline{G}_{i}^{E} and the activity coefficient γ_{i} for each component.

Also determine the liquid fugacity \hat{f}_i^L in terms of x_i and the fugacity at *pure* state, f_i^L . R = 8.314 Joule mole⁻¹ K⁻¹ is the gas constant. (9%)

(b) As for the vapor phase, its PVT behavior can be described by

$$\frac{PV}{RT} = 1 + \frac{BP}{RT} \,.$$

Here the second virial coefficient is given by $B = y_1 B_1 + y_2 B_2$ with y_i and B_i standing respectively for the mole fraction and the virial coefficient for component i (=1,2). Determine the partial residual Gibbs free energy \bar{G}_i^R and the vapor fugacity coefficient $\hat{\phi}_i$ for each component. (8%)

- (c) Write the expression for the fugacity at *pure* state f_i^L in terms of the saturated vapor pressure P_i^{sal} and the corresponding fugacity coefficient ϕ_i^{sal} . Assume that f_i^L is insensitive to the vapor pressure P. Also use the results in (b) to determine f_i^L in terms of P_i^{sal} and B_i . (8%)
- (d) At temperature T=300K the liquid composition is known, say, $x_1=0.5$. Find the vapor pressure and composition. You will need to use the results in (a)-(c) and the data below to solve this problem. $B_1=2.4942$ m³/mole, $B_2=4.9884$ m³/mole, $P_1^{sat}=0.5$ kPa, $P_2^{sat}=1$ kPa. (8%)