編號: 216

國立成功大學一○○學年度碩士班招生考試試題

共 / 頁 第/頁

系所組別: 電腦與通信工程研究所丙組

考試科目: 電磁數學

考試日期:0220,節次:3

※ 考生請注意:本試題 □可 □不可 使用計算機

- 1. (15%) Solve $[(x+3)D^2 (2x+7)D + 2]y = (x+3)^2e^x$
- 2. (20%) Solve $xr + 2p = (9x + 6)e^{3x+2y}$, where $r = \frac{\partial^2 z}{\partial x^2}$ and $p = \frac{\partial z}{\partial x}$
- 3. (15%) Evaluate the following integral

$$\int_{-1}^1 \frac{dt}{t^2+i}$$

- 4. (25%) Mark each of the following statements True (T) or False (F). (Need NOT to give reasons.)
 - (a) A real square matrix may have complex eigenvalues and complex eigenvectors.
 - (b) Let M be a symmetric matrix. If M is invertible, then M^{-1} is also a symmetric matrix.
 - (c) Let M be a real square matrix of size n. If $||M\mathbf{x}||^2 = ||\mathbf{x}||^2$ for all $\mathbf{x} \in \mathbb{R}^n$, then M is an orthogonal matrix, $M^TM = I_n$.
 - (d) Let M be an $m \times n$ matrix, $m \neq n$. We have $\operatorname{rank}(M^T M) = \operatorname{rank}(M M^T)$.
 - (e) Let M be an $m \times n$ matrix, $m \neq n$. We have nullity $(M^T M) = \text{nullity}(MM^T)$.
- 5. (15%) Suppose that A is a square matrix of size n, and $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of A, with the corresponding multiplicity m_1, \ldots, m_k , respectively, where $m_1 + \cdots + m_k = n$. Prove the determinant of A is

$$\det(A) = \lambda_1^{m_1} \lambda_2^{m_2} \cdots \lambda_k^{m_k}.$$

6. (10%) Let I_m and I_n be identity matrices of sizes m and n, respectively, where we assume m > n. Can you find an $m \times n$ matrix A and an $n \times m$ matrix B such that $AB = I_m$ and $BA = I_n$? (Explain your answer.)