編號: 215

國立成功大學一○○學年度碩士班招生考試試題

共 3 頁,第/頁

系所組別: 電腦與通信工程研究所丙組

考試科目: 電磁學及電磁波

考試日期:0220:節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

*
$$\varepsilon_0 = 10^{-9/36}\pi$$
; $\mu_0 = 4\pi \times 10^{-7}$; $\eta_0 = 120\pi$

- 1. If a current I of 1 A following in a infinite conductor wire, determine the distance (m) from the the wire where B field is 2 micro-Guass (mG). (5%) * 1 Tesla = 10^4 x Guass
- 2. Determine the **power density S** (W^2/m^2) of a plane wave with a E-field $E = 60 dB\mu V/m$. (5%) * $E(dB\mu V/m) = 20 \times \log[E(V/m) \times 10^6]$
- 3. (a) As shown in the following *left figure*, if the input SWR of an antenna is SWR_{ant}=3 and the input signal power is 1 W, determine the signal power (W) delivered to the antenna when the antenna is connected to a 3-dB attenuator. Also determine the value of SWR_{ant+3-dB} attenuator. (Assume the attenuator is perfectly matched) (10%)
 - *You must solve the problem from the basic definition of SWR, reflection coefficient Γ , and 3-dB attenuation.
 - (b) As shown in the following right figure, if the input SWR of an antenna is $SWR_{ant}=2$ and the input signal power is 1 W, determine the antenna radiation power (dBm) if the antenna gain G=10 dB. (5%)

4. From the equivalent circuit of the transmission line (TL), the propagation constant γ can be derived as $\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$. Determine the attenuation constant α , propagation constant β , and phase velocity u_p of a lossless TL. (10%)

5. The transmission (ABCD) matrix of a two-port network is defined as

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix} \qquad Port \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad Port \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad Port \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Deterine the (ABCD) matrix of a transmission line with a length $l = \lambda/4$. (10%)

$$Z_0, l = \lambda . / 4$$

編號

215

國立成功大學一○○學年度碩士班招生考試試題

共 3 百、第2百

系所組別: 電腦與通信工程研究所丙組

電磁學及電磁波

考試日期:0220、節次:2

※ 考生請注意:本試題 ▽ □ □ 不可 使用計算機

- 6. (a) Find the expresson for the H_z field and induced current of the TM_{21} mode on the waveguide wall (with $a \times b$ cross section) at x = 0 and y = 0. (10%)
 - (b) From the propagation constant γ_{mn} , find the expression of the cutoff frequency f_{mn} for each mode. (10%)

TM_{mn} waveguide mode:
$$h_{mn}^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$
; $\gamma_{mn} = \sqrt{h_{mn}^2 - \omega^2 \mu \epsilon}$

$$E_{x} = -\frac{\gamma_{mn}}{h_{mn}^{2}} \left(\frac{m\pi}{a}\right) E_{0} \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{m\pi}{b}y\right)$$

$$E_{y} = -\frac{\gamma_{mn}}{h_{mn}^{2}} \left(\frac{n\pi}{b}\right) E_{0} \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$

$$E_{z} = E_{0} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$$

$$H_{x} = \frac{j\omega\varepsilon}{h_{mn}^{2}} \left(\frac{n\pi}{b}\right) E_{0} \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$

$$H_{y} = -\frac{j\omega\varepsilon}{h_{mn}^{2}} \left(\frac{m\pi}{a}\right) E_{0} \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$$

- 7. (a) For a normalized impedance z = r + jx (Ω), prove the location point of the admittance y in the Smith Chart is at the 180° rotation from the point of z.
 - (b) Plot the normalized impedance point (to 50 Ω) in the Smith Chart of a 2-pF capacitor and a 5.3-nH inductor at 3 GHz. (5%)
 - (c) For a transmission line with a load of 2-pF capacitor, determine the line length (λ) approximately to let the input impedance equivalent to 5.3-nH inductor (at 3 GHz). (5%)

- * Draw the approximate Smith Chart figure .
- 8. (a) Fo the TE₁₀ mode in an air-filled WR15 rectangular waveguide (with a x b cross section, a = 2b), determine the size of a (mm) to have a cutoff frequency $f_c = 50$ GHz. and the waveguide impedance $Z_{TE}(\Omega)$ at 60 GHz.(5%)
 - (b) Determine the length (mm) of a short-circuited WR15 waeguide filled with a dielectric of ε , =9 to have an infinite input impedance for the TE₁₀ mode operating at 60 GHz. (10%)

$$Z_{TE} = \eta / \sqrt{1 - (f_c/f)^2} \qquad \lambda_g = \lambda / \sqrt{1 - (f_c/f)^2}$$

$$\lambda_g = \lambda / \sqrt{1 - (f_c/f)^2}$$

編號: 215

國立成功大學一○○學年度碩士班招生考試試題 共 3 頁,第3頁

系所組別: 電腦與通信工程研究所丙組

考試科目: 電磁學及電磁波

考試日期:0220,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

請勿在本試題紙上作答,否則不予計分

