※ 考生請注意：本試題 V可 口不可 使用計算機 請勿在本試題紙上作答，否則不予計分

Please leave a space and summarize your answer in the beginning of your answer sheet according to the format shown as follows．

1.			
2			
3	（a）	（b）	
4	（a）	（b）	（c）
5		（d）	
6	（a）	（b）	
7			
8			
9	（a）		

1．（ 10% ）Suppose there are three chests each having two drawers．The first chest has a gold coin in each drawer，the second chest has a gold coin in one drawer and a silver coin the other drawer，and the third chest has a silver coin in each drawer．A chest is chosen at random and a drawer opened．If the drawer contains a gold coin， what is the probability that the other drawer contains a gold coin？

2．（ 10% ）Suppose n balls are identically and independently distributed into n boxes． Compute the probability that only box 1 is empty．

3．（ 10% ）In present day，toys are placed in candy boxes to entice young purchasers． Suppose that there are r different types of toys，and that a given box is equally likely to contain any one of them．If n boxes are purchased，find the probability of
（a）having collected at least one of each type？
（b）of missing exactly k of the r types？

4．（20\％）Let X and Y be independent random variables each geometrically distributed with parameter p ．
（a）Find the distribution of $\min (X, Y)$
（b）Find the probability $P(\min (X, Y)=X)$
（c）Find the distribution of $X+Y$
（d）Find the probability $P(Y=y \mid X+Y=z)$ for $y=0,1, \ldots, z$ ．

編號： 229
圆立成功大掌一○○學年度碩士班招生考試試题
共 2 頁•第2頁
系所組別：製造資訊與系統研究所乙組
考試科目：機率與統計
考試日期：0220，節次： 3
※考生請注意：本試題 \｜可 口不可 使用計算機

5．(10%) Let T_{i} be the number of trials up to and including the i－th success．
Let $0 \leqq x_{1}<\cdots<x_{r}$ be integers．Compute the probability $\mathrm{P}\left(T_{1}=x_{1}, T_{2}=x_{2}, \ldots, T_{r}=x_{r}\right)$ ．

6．（ 10% ）Let X_{1}, X_{2}, X_{3} be independent random variables each uniformly distributed or：$(0,1)$ ．
（a）Find the density of the random variable $Y=X_{1}+X_{2}+X_{3}$ ．
（b）Find the probability $P\left(X_{1}+X_{2}+X_{3} \leqq 2\right)$ ．

7．(10%) A polling organization samples 1200 voters to estimate the proporlion planning to vote for candidate A in a certain election．How large would be the true proportion p have to be for candidate A to be 95% sure that the majority of those sampled will vote for him？

3．（ 10% ）Suppose the length of life of a certain kind of light bulb，after it is installed， is exponentially distributed with a mean length of 10 days．As soon as une light bulb burns out，a similar one is installed in its place．Find the probab！lity that more than 50 bulbs will be required during a one－year period．

9．(10%) Two players having respective initial capitals of $\$ 5$ and $\$ 10$ agree to make a series of $\$ 1$ bets until one of them goes broke．Assume the outcomes of the bets are independent and both players have probability $1 / 2$ of winning any given bet．
（a）Find the probability that the player with the initial capital of $\$ 10$ goes broke
（b）Find the expect number of bets．

Reference：
$\Phi(z)=\int_{-s}^{z} \frac{1}{\sqrt{2 \pi}} e^{-u^{z} / 2} d u=P(\langle\leq z)$

$\Phi(1.10)=0.8643$	$\Phi(-1.90)=0.0 .87$	
$\Phi(1.11)=0.8665$	$\Phi(-1.91)=0.0281$	$\Phi(-1.64)=0.0505$
$\Phi(1.12)=0.8686$	$\Phi(-1.92)=0.0274$	$\Phi(-1.65)=0.0495$
$\Phi(1.13)=0.8708$	$\Phi(-1.93)=0.0 .68$	

