編號:

325

國立成功大學一○○學年度碩士班招生考試試題

共/頁,第/頁

系所組別: 交通管理科學系甲、乙、丙、丁組

考試科目: 統計學

考試日期:0220 : 節次:2

※ 考生請注意:本試題 □可 ☑不可 使用計算機

1. TRUE or FALSE (25%)

Consider the following normal error simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
 $i = 1...n$ where

 Y_i is the observed response in the ith trial

 X_i is a known constant, the level of the predictor variable in the *i*th trial

 β_0 and β_1 are parameters

 ε_i are independent $N(0,\sigma^2)$

Let X_h denote the level of independent variable for which we wish to estimate the mean response $E\{Y_h\}$. Let \hat{Y}_h denote the point estimator of $E\{Y_h\}$; $\hat{Y}_{h(new)}$ denote the new observation on response variable at a given level X_h . $\overline{X} = \sum_i X_i / n$; $\overline{Y} = \sum_i Y_i / n$.

Please indicate if the following statement is True or False. (5% for each question)

- (a) The least squares estimators $b_1 = \sum (X_i \overline{X})(Y_i \overline{Y}) / \sum (X_i \overline{X})^2$ and $b_0 = \overline{Y} b_1 \overline{X}$ of β_1 and β_0 are unbiased and have minimum variance among all unbiased linear estimators.
- (b) The maximum likelihood estimators of β_1 and β_0 are unbiased and have minimum variance among all unbiased linear estimators.
- (c) β_1 indicates the change in the mean of the probability distribution of response variable per unit increase in predictor variable.
- (d) The variability of the sampling distribution of \hat{Y}_h is affected by how far X_h is from \overline{X} .
- (e) The 95 percent prediction interval for the mean of 3 new observations for given X_h is wider than that obtained for a new observation $Y_{h(new)}$.
- (25%) Let X be a random variable with mean μ, and the variance of X, denoted by Var(X).
 Please define a reasonable way of measuring the possible variation of X. Explain your answer (in Chinese or English and/or figure)!
- 3. (25%) Suppose that the number of kilometers that a car can run before its battery wears out is exponentially distributed with an average value of 10,000 kilometers. If a person desires to take a 5000-kilometer trip, what is the probability that he or she will be able to complete the trip without having to replace the car battery?
- 4. (25%) Determine the maximum likelihood estimator of θ when $X_1,...,X_n$ is a sample with density function

$$f(x) = \frac{1}{2} e^{-|x-\theta|} \qquad -\infty < x < \infty$$