編號:

306,313

國立成功大學一○○學年度碩士班招生考試試題

共 2 頁,第/頁

系所組別: 企業管理學系丁組、國際企業研究所乙組

考試科目: 微積分

考試日期:0219 · 節次:3

## ※ 考生請注意:本試題 □可 ☑不可 使用計算機

- 1. Find the answer of  $Q = \int_0^1 \int_0^{x_n} \cdots \int_0^{x_3} \int_0^{x_2} dx_1 dx_2 \cdots dx_{n-1} dx_n$ . (5 %)
- 2. Find the Taylor polynomial of order n about 0 for  $f(x) = (1+x)^n$ , n > 0 is an integer, and |x| < 1. (5%)

3.

- (a) Let  $b_n = \frac{1}{n^2}$ . Is  $\sum b_n$  convergent or divergent? (5%)
- (b) Let  $a_n = \frac{4n}{5n^3 1}$ ,  $n \ge 1$ . Is  $\sum a_n$  convergent or divergent? (5%)
- 4. Evaluate: (20%, 4% each)

(a) 
$$\int (x+2)\sin(x^2+4x-6)dx$$
. (b)  $\int_{-1}^{1} \frac{dx}{\sqrt{(x+2)(3-x)}}$ . (c)  $\int \frac{xdx}{\sqrt{x^2+x+1}}$ .

(d) 
$$\int_0^1 |2x^2 - x| dx$$
. (e)  $\int_0^\infty x^6 e^{-2x} dx$ .

5.

(a) If 
$$x^2y + y^3 = 2$$
, find (i)  $y'$ , (ii)  $y''$  at the point (1,1). (8%)

(b) If 
$$y''(t)+(2+t)y'(t)+(2+t^2)y(t)=0$$
,  $y(0)=2$ , and  $y'(0)=0$ , find (i)  $y''(0)$  and (ii)  $y'''(0)$ . (10%)

6. The GDP of Country A is given by  $Y(K,L) = 80K^{0.2}L^{0.8}$  in which K is the quantity of capital and L is the quantity of labor employed. The cost of labor per unit is \$20 while the cost of capital is \$40 per unit. The sum of cost of capital and labor is constrained to be \$600,000. What are the numbers of units of capital and labor that maximize the GDP of Country A. (12%)

編號:

306, 313

## 國立成功大學一○○學年度碩士班招生考試試題

共ノ頁・第ノ頁

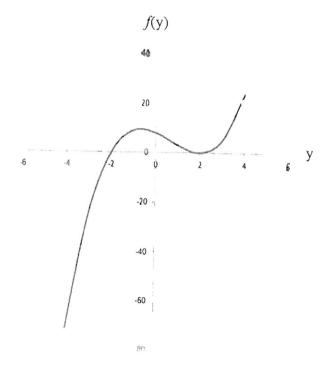
系所組別: 企業管理學系丁組、國際企業研究所乙組

考試科目: 微積分

考試日期:0219 · 節次:3

## ※ 考生請注意:本試題 □可 □不可 使用計算機

7. The population sizes of eagles (E) and turkeys (C) at time t are described as the following differential equations: (E and C both are measured in thousands while t is measured in years)


$$\frac{dE}{dt} = 0.09(C - 7),$$

$$\frac{dC}{dC} = 0.16(E - 2)$$

$$\frac{dC}{dt} = -0.16(E - 3)$$

Suppose that the initial population of eagles is 3,600 and the initial population of turkeys is 9,000. Find the population functions of E and C. (16%)

8. The following figure demonstrates the differential equation (autonomous equation)  $\frac{dy}{dt} = f(y)$ 



- (a) Classify each equilibrium solution of the autonomous equation as sink, node or source. (4%)
- (b) The possible function of f(y). (5%)
- (c) The rough drawing of direction fields (slope fields) that correspond to the autonomous equation  $\frac{dy}{dx} = f(y)$ . (5%)