編號:

338

國立成功大學一○○學年度碩士班招生考試試題

共3頁第/頁

系所組別: 體育健康與休閒研究所乙組

考試科目: 微積分

考試日期:0220,節次:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機

(5%) Part A. 單一選擇題(一題 5 分,答錯不倒扣。不熟悉微積分者應從計算題答起)

- 1. Suppose $L = \lim_{x \to 3} \frac{x+4}{x^2-1}$. This means that we want to calculate $\frac{x+4}{x^2-1}$ when x approaches 3. Thus, L is equal to (a) 1/2 (b) 3/4 (c) 7/8 (d) 8/9
- 2. Suppose $L = \lim_{x \to -5} \frac{x^2 + x 20}{x + 5}$. In this case, L is (a) 0 (b) -1 (c) -9 (d) undefined (it cannot be calculated).
- 3. Suppose $L = \lim_{x \to 0^+} \frac{e^x 1}{x}$. In this case, L is (a) 0 (b) 1 (c) -1 (d) undefined.
- 4. Suppose $f(x) = \frac{1}{x}$. Then $\frac{df(x)}{dx}$ is (a) $\frac{1}{x}$ (b) x (c) -x (d) $\frac{-1}{x^2}$
- 5. For the expression $\sqrt{x} + \sqrt[3]{y} = 5$, the derivative $\frac{dy}{dx}$ can be found implicitly as (a)

$$-\frac{3}{2}\frac{y^{2/3}}{x^{1/2}}$$
 (b) $\frac{3}{2}\frac{y^{2/3}}{x^{1/2}}$ (c) $-\frac{1}{2}\frac{y^2}{x^{1/2}}$ (d) $\frac{y}{x}$

- 6. Suppose $f(x) = x^x$. Then $\frac{df(x)}{dx}$ is (a) $\frac{1}{x} + x$ (b) $x^x(1 + lnx)$ (c) -x lnx (d) x^x
- 7. Suppose $f(x) = x + 3x^2$. Then $\int f(x)dx$ is (a) x (b) x(1+x) (c) $x^2 + x^3 + C$ (d)
- $\frac{1}{2}x^2+x^3+C$. Here C is a constant.
- 8. For x>0, the area enclosed by $f(x)=x^3$ and f(x)=x is (a) 1 (b) 1/4 (c) 3/4 (d)1/2.
- 9. Suppose $f(x) = \frac{1}{x^2 \sqrt{16 x^2}}$. Then $\int f(x) dx$ is (a) $\frac{\cot x}{16} + C$ (b) $\frac{-\cot x}{16} + C$ (c)
- $\frac{-\cos x}{16}$ +C (d) $\frac{-\tan x}{16}$ +C. Here C is a constant.
- 10. Suppose $f(x) = xe^x$. Then $\int f(x)dx$ is (a) x+C (b) xe^x+C (c) xe^x+e^x+C (d) xe^x-e^x+C . Here C is a constant.

(背面仍有題目,請繼續作答)

編號: 338

國立成功大學一○○學年度碩士班招生考試試題

共 多頁,第2頁

系所組別: 體育健康與休閒研究所乙組

考試科目: 微積分

考試日期:0220,節次:5

※ 考生請注意:本試題 □可 ☑不可 使用計算機

(50%) Part B. 計算題 (共 3 類)

- 1. The definition of $\frac{df(x)}{dx}$, which is called derivative of f(x) with respect to x, is the rate of change of f(x) for an infinitely small change in x. That is, $\frac{df(x)}{dx}$ is defined as $\lim_{h\to 0} \frac{f(x+h)-f(x)}{x+h-x} = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$
- (a) Please use the above definition to calculate $\frac{df(x)}{dx}$, where $f(x) = x^2$ (此題 5 分)
- (b) Use the definition to show that the derivation of f(x)=|x| does not exist because $\frac{df(x)}{dx}$ calculated for positive h is different from $\frac{df(x)}{dx}$ calculated for negative h. (此題 5 分)
- 2. Suppose we have a differential equation $\frac{dy}{dt} = 2$. To solve for y we can bring dt to the right side to have dy = 2 dt. Then integrate both sides to get y = 2t + C, where C is a constant.
- (a) Please use the above definition to solve for y in $\frac{dy}{dt} = \sin t + t$ (此題 5 分)
- (b) A free-fall body's motion is governed by the differential equation $\frac{d^2y}{dt^2}$ =g, where g is the gravitational acceleration. Please solve for y (此題 10分)
- (c) If we know the initial condition of y, then C can be evaluated. For example, if we know that y=1 at t=0, then from y=2t+C we know that 1=0+C, which means C
- =1. Suppose we know that y=Y at t=0 and $\frac{dy}{dt}$ =V at t=0. Use these initial conditions
- to show that the equation $\frac{d^2y}{dt^2}$ =g can be solved to get y = Y + Vt + gt²/2. (此題 5 分)

編號:

338

國立成功大學一○○學年度碩士班招生考試試題

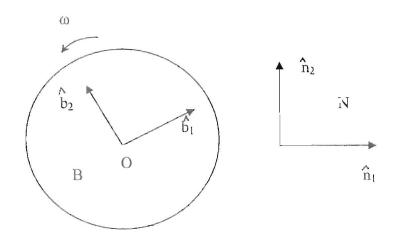
共 3 頁,第3頁

系所組別: 體育健康與休閒研究所乙組

考試科目: 微積分

考試日期:0220,節次:3

※ 考生請注意:本試題 □可 ☑不可 使用計算機


3. The velocity of a point in reference frame N is defined as taking the derivative of its position vector with respect to time in frame N. For example if the position vector

 $\vec{P} = 2t\,\hat{n}_1 + \sin t\,\hat{n}_2$, then the velocity is $2\,\hat{n}_1 + \cot \hat{n}_2$. Here \hat{n}_1 and \hat{n}_2 are unit vectors fixed in frame N, and therefore do not change with time.

(a) A disk (called body B) is rotating relative to the fixed reference frame N. Pont O is fixed in N and also in B. Another point Q has the position vector $R\hat{b}_1 = R(\cos\omega t \hat{n}_1 + \sin\omega t \hat{n}_2)$ relative to point O. Here R and ω (angular speed) are constants. This means that Q is fixed in frame B but is moving in frame N. Calculate the velocity of Q in frame B and in frame N. (此題 10 分)

(b) From the figure we know $\hat{b}_1 = \cos \omega t \, \hat{n}_1 + \sin \omega t \, \hat{n}_2$, and $\hat{b}_2 = -\sin \omega t \, \hat{n}_1 + \cos \omega t \, \hat{n}_2$. Show that the cross product $\omega \, \hat{b}_3 \times R \, \hat{b}_1$ is equal to the velocity of Q in frame N. (此題 5分)

(c) Actually if body B is rotating in N with the angular velocity $\bar{\omega} = \omega \hat{b}_3 = \omega \hat{n}_3$, then taking time derivative of a vector \vec{P} in frame N is equal to taking time derivative in frame B plus the term $\bar{\omega} \times \vec{P}$. With this knowledge, if $\vec{P} = t^2 \hat{b}_1$, calculate the velocity in frame N. (此題 5分)

