:控制系統(300D)

校系所組:交通大學電控工程研究所(甲組、乙組)

清華大學電機工程學系(甲組、丁組)

(11%) The DC motor variables and parameters are defined as follows:

i(t) = armature current

L = armature inductance

R =armature resistance

e(t) = applied voltage

 K_b = back-emf constant $T_L(t)$ = load torque

 K_i = torque constant

 $\omega(t)$ = rotor angular velocity

 $\theta(t)$ = rotor angular displacement J = rotor inertia

B = viscos friction coefficient

- (a) (5%) obtain its transfer function $\frac{\Theta(s)}{E(s)}$
- (b) (6%) obtain its state-space equation with

 x_1 : rotor angular displacement

 x_2 : rotor angular speed, and

 x_3 : armature current

- (18%) For a system as $G(s) = \frac{2(s+1)}{s^2(s+100)}$,
 - (a) (6%) plot its root locus,
 - (b) (6%) estimate all control gains to achieve $\zeta = 0.707$ with unit feedback, and
 - (c) (6%) if the system is with non-unit feedback H(s) = 2, determine its steady-state error e_{ss} with a unit-step function input.
- 3. (21%) For a plant as $G(s) = \frac{c}{s(s+a)(s+b)}$ with unit feedback,
 - (a) (7%) to achieve the closed-loop poles at $-d \pm je$ with a suitable gain K_1 , determine the third closed-loop pole (s+f) of the system,
 - (b) (7%) obtain the control gain K_2 to achieve critically damped system ($\zeta = 1$) for the dominant poles, and
 - (c) (7%) determine the coefficient g for a PD control $K_3(s+g)$ to achieve the closed-loop poles at $-2d \pm j2e$

科目:控制系統(300D)

校系所組:交通大學電控工程研究所(甲組、乙組)

清華大學電機工程學系 (甲組、丁組)

- 4. (27 %) The Nichols chart of the open-loop transfer function $L(j\omega)$ of a unity-feedback system is shown in the following.
 - (a) (10%) Determine the open-loop transfer function.
 - (b) (3 %) Let the input is unit-step. Find the closed-loop steady-state error in percentage.
 - (c) (5 %) Plot the corresponding Nyquist plot of $L(j\omega)$, indicating all information from the Nichols chart. Is the system stable?

- (d) (4%) Determine the phase margin and gain margin and its corresponding frequencies.
- (e) (3 %) A P controller is added to increase the phase margin to 90°. Find the controller and its corresponding gain-crossover frequency.
- (f) (2 %) To reduce the closed-loop steady-state error by P controller, what will happen to its phase margin, why?
- 5. (23 %) Consider the following feedback system with the plant $G_{\rho}(s)$ and the controller $G_{c}(s)$.

Let $G_p(s) = \frac{1}{s^2(s+6)}$. You are asked to desired a PD controller $G_c(s) = K(s+z)$, where z > 0.

- (a) (8%) Sketch the Nyquist plot for K>0 and z>0. Determine the range of z to stabilize the system.
- (b) (5 %) Choose z=1. Find K and the corresponding gain crossover frequency so that the phase margin=45.
- (c) (2%) When $r(t) = e^{-t}$, what output will you expect in (c)?
- (d) (5 %) Formulate the system by Controllability Canonical form. Let the state equation. $\frac{\dot{x} = Ax + Br}{y = Cx + Dr}$, where $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ and $y = x_1$, $x_2 = \dot{x}_1$, and $x_3 = \dot{x}_2$. Find the corresponding A, B, C and D in terms of K and z.
- (e) (3 %) Let $x = P\overline{x}$. It exists a nonsingular matrix P to factorize A to be \overline{A} , which is diagonal. Why do we have to transform A to be diagonal? What is the advantage?