| 系 | 所班組別:動力機械- | 工程學系乙組 | (電控組) | | | | |--|--|------------------------------------|--|-------------------------|-------------------------------------|---------------| | 考 | 試科目 (代碼):電路 | 學及電子學 | (1102) | | | | | | | 共 | | | *請在【答案卷、 | 卡】作答 | | No
do | tice: To have full credits, wn every essential equation | you should descar, and give proper | ribe your app
ly explanatio | roximatic
n in solvi | on and assumptioning problems. | ns, write | | 1. | Choose the one alterative that best completes the statement or answers the question. One point for each correct answer. (10 pts) (a) A network has 10 branches and 8 nodes, then how many independent loops would it be? | | | | | | | | A) 2 B) 3 C) | 17 D) 18 | E) not enou | gh inforn | nation. | | | | (b) The Wheatstone bridge circuit is widely used to measure: A) exact voltages. B) precise resistances. C) accurate currents. D) precise power. E) all the these. | | | | | | | (c) A resistor with negative resistance, implies that A) It will still dissipate power. B) It can deliver power. C) It has a positive voltage drop. D) It will reduce current flow. E) | | | | | | se. | | | (d) If a circuit element is measured to have i=sin10t and v=cos10t, the element is | | | | | | | | A) a resistor.C) an inductor. | • | B) a capacitor. D) none of these. | | E) all of these. | | | | (e) Electrolytic capacitor differ from all other capacitors in construction in that they are: | | | | | | | | A) larger.C) sensitized. | B) smaller.
D) polarized. | | \mathbf{E} | E) none of these. | | | | (f) If a 22 μF and 100 μ capacitance equals A) 122μF, 15V. C)18μF, 2.7V. | and the
B) 18 ₁ | connected in 22 µF capaci
µF, 12.30V.
µF, 15V. | tor drops_ | th a 15V source, E) none of these. | the total | | | (g) In a series RLC circuit while operating below the resonant frequency, the impedance is: | | | | | | | | A) mode capacitive. C) at minimum. | B) more in D) at maxis | ductive. | | none of these. | | | | (h) What is the source vo
= 50V? | ltage in a series | resonant circu | uit if V _c = | $150V, V_L = 100$ | V and V_R | | | A) 300V.
D) 35.35V. | B) 100V.
E) none o | of these. | C) 7 | 70.71V. | | #### 系所班組別:動力機械工程學系乙組(電控組) 考試科目 (代碼):電路學及電子學 (1102) (i) What is the bandwidth of a series resonant circuit if the resonant frequency is 14.2 MHz, the inductive reactance is $2 k\Omega$ and the coil's resistance is 8Ω ? A) 8.8 kHz. B) 1.42 kHz. C) 2.84 kHz. D) 5.68 kHz. E) none of these. (j) If the true power is 100W and the reactive power is 100 VAR (Ind.), the power factor is: A) 0.707 leading. B) 0.707 lagging. C) 0.5 leading. D) 0.5 lagging. E) none of these. - 2. Fill the blanks for the following questions: (10 pts. 1 pt for each blank) - (a) The characteristics of ideal operational amplifier are (A), zero common-mode gain, (B), and infinite bandwidth. - (b) Moore's law describes that transistor density of semiconductor chips would be <u>(C)</u> roughly every <u>(D)</u> months. - (c) Diodes can be combined with resistors to form a <u>(E)</u> circuit that converts an ac voltage into one that is limited to one polarity. - (d) A <u>(F)</u> forms between two regions if a piece of intrinsic silicon is doped so that half is n-type and the other half is p-type. - (e) (G) means that a voltage produced from the action of photons in a solar cell. - (f) The characteristics for Source Follower are high input resistance, (H), (I), and relatively large current gain. - (g) Field-effect transistors, FETs, are solid-state devices in which an <u>(J)</u> controls the flow of charge carriers through a conducting channel. - 3. For the following bridge circuit as shown in Figure 3. (10 pts) (a) Determine R_x to make I=0. (b) If R_x is $4 k\Omega$, calculate I. Figure 3 系所班組別:動力機械工程學系乙組(電控組) 考試科目(代碼):電路學及電子學(1102) - 4. As shown in Figure 4, the neon light fires when its voltage reaches 60V and turn off when its voltage drops to 30V. Its resistance is 120Ω when on and infinitively large when off. (10 pts) - (a) For how long is the lamp on each time the capacitor discharges? - (b) What is the time interval between light flashes? - 5. A 120-V rms 60-Hz source supplies two loads connected in parallel, as shown in Figure 5. (15 pts) - (a) Find the power factor of the parallel combination. - (b) Calculate the value of the capacitance connected in parallel that will raise the power factor to unity. Figure 5 系所班組別:動力機械工程學系乙組(電控組) 考試科目(代碼):電路學及電子學(1102) 共_5 頁,第 4 頁 *請在【答案卷、卡】作答 6. Derive the differential equation for the output v_0 of op-amp circuit shown in Figure 6. (10 pts) Figure 6 - 7. The parameters of the transistor in the circuit in Figure 7 are $\beta = 100$ and Early voltage $V_A = \infty$. - (a) Determine R_1 and R_2 to obtain a bias-stable circuit; that is $R_1 || R_2 = 0.1(1 + \beta)R_E$, with the Q-point in the center of the load line, $R_C = 0.8 \text{ k}\Omega$ and $R_E = 0.2 \text{ k}\Omega$. (9 pts) - (b) Derive the small-signal voltage gain $A_v = v_0/v_s$. (Please DO NOT calculate the voltage gain; only derive the expression.) (6 pts) Figure 7 系所班組別:動力機械工程學系乙組(電控組) 考試科目 (代碼):電路學及電子學 (1102) 共_<u>5</u>頁,第<u>5</u>頁 *請在【答案卷、卡】作答 - 8. For the circuit shown in Figure 8, assume $g_{m1} >> 1/r_{o1}$. The source and bulk of M_1 are connected. M_1 , M_2 are in saturation. - (a) Write an expression for the small signal gain of entire circuit, v_{out}/v_{in} . (4 pts) - (b) Given that $V_{\text{th}} = 1 \text{ V}$, $g_{\text{m1}} = g_{\text{m2}} = 1 \text{ ms}$, $I_1 = I_2 = 150 \text{ }\mu\text{A}$. What is the value of V_{BIAS} ? (Hint: One of the three expressions for transconductance is very useful for this problem.) (6 pts) - 9. As shown in Figure 9, all devices are operating in saturation. Ignore all capacitances except C_L . Body of M1, M2 at ground. M1 = M2, M3 = M4 = M5. - (a) Draw the small-signal equivalent model. (4 pts) - (b) Derive an expression for output voltage gain, v_{out}/v_{in} . (6 pts)