國立臺灣大學100學年度碩士班招生考試試題

科目:統計學(G)

題號:300

共 / 頁之第全頁

1. Regression methods were used to analyze the data from a study investigating the relationship between roadway surface temperature (x) and pavement deflection (y). Summary quantities were n=20, $\sum y_i = 12.75$, $\sum y_i^2 = 8.86$, $\sum x_i = 1478$,

 $\sum x_i^2 = 143220$, $\sum x_i y_i = 1085$. (30%)

- Calculate the least squares estimates of the slope and intercept of a simple linear regression model.
- (2) Use the equation of the fitted line to predict what mean pavement deflection would be observed when the surface temperature is $85^{\circ}F$
- (3) Estimate σ^2 .
- 2. The random variable X has a binomial distribution with n=10 and p=0.5. Sketch the probability mass function of X. (10%)
 - (1) What value of X is most likely?
 - (2) What value(s) of X is (are) least likely?
- The elapse time X between the occurrences of two consecutive (independent) storm events (commonly known as the inter-arrival-time) can be characterized by a negative exponential distribution with the following probability density function:

$$f_X(x;\lambda) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

where $\lambda > 0$. Suppose that inter-arrival-time (in hours) of a series of storm events are observed and listed below.

150	2	15	2	79	54	60	47	79	15
49	19	70	17	30	24	106	55	27	71
53	53	6.	173	59					

- (1) Derive and calculate the maximum likelihood estimator of λ using the above observations? (10%)
- (2) If a storm event just occurred, estimate the probability that the next storm event will occur within 48 hours? (10%)
- 4. Random variables X and Y are correlated with correlation coefficient $\rho_{XY} = 0.8$. The variances of X and Y are 125 and 400, respectively. Let Z = 2.5X 1.2Y. Calculate the variance of Z. (20%)
- 5. A factory has ten production lines that produce the same products. These production lines are run under the same process and are independently operated. A new treatment was implemented in the manufacturing process to reduce the rate of defect products (瑕疵率). The following table lists the defect rates (in percentages, %) of individual production lines before and after implementation of the new

D. L. C.		г							(20%	/
Production Line	1	2	3	4	5	6	7	8	9	10
Before	8.4	9.5	9.7	13.0	6.8	13.0	9.7	6.4	10.7	8.1
After	8.6	6.3	8.6	5.7	7.4	6.6	6.4	7.1	4.5	8.8

Assume the defect rates are normally distributed. Conduct a hypothesis test to determine whether the new treatment did help to reduce the mean defect rates. (Level of

		Cumulative probability of t distribution $P[T \le t]$								
-	n	0.75	0.9	0.95	0.975	0.99				
Degree of freedom	5	0.727	1.476	2.015	2.571	3.365				
	6	0.718	1.440	1.943	2.447	3.143				
	7	0.711	1.415	1.895	2.365	2.998				
	8	0.706	1.397	1.860	2.306	2.896				
	9	0.703	1.383	1.833	2.262	2.821				
	10	0.700	1.372	1.812	2.228	2.764				