國立臺灣大學100學年度碩士班招生考試試題

科目:統計學(F)

題號:383

超號: 383 共 2 頁之第 1 頁

請依題號順序作答,並且將答案填寫於答案卷上。

- 1. Municipal bond service in Country Avatar has three rating categories (A, B, and C). Suppose that in the past year, of the municipal bonds issued, 60% were rated A, 25% were rated B, and 15% were rated C. Of the municipal bonds rated A, 55% were issued by cities, 40% by suburbs, and 5% by rural area. Of the municipal bonds rated B, 70% were issued by cities, 15% by suburbs, and 15% by rural areas. Of the municipal bonds rated C, 85% issued by cities, 10% by suburbs, and 5% by rural areas.
- a) What proportions of municipal bonds are issued by cities, suburbs, and rural areas, respectively? (12 points)
- b) If a new municipal bond is to be issued by a suburb, what is the probability that it will be rated A? (4 points)
- 2. Assume random variable, X is distributed as a binomial distribution with n trials and probability of success, p.
 - a) Write down the probability distribution function. (2 points)
- b) Interpret "expected value." (2 points)
- c) Find the expected value of X, E(X) = np. (10 points) (Hint: provided $x \neq 0$, we can expand x! as x(x-1)!. $\sum_{k=0}^{n} {n \choose k} p^k = (1+p)^n$)
- 3. A local pizza restaurant and a local branch of a national chain are located across the street from a college campus. The local pizza restaurant advertises that they deliver to the dormitories faster than the national chain. The delivery time of these two restaurants are summarized as follows.
 - a) Explain "Type I Error." (3 points)
 - b) Assuming the probability of Type I Error is 10%, can you verify the claim of local pizza restaurant? (17 points)

74	Local	Chain
Mean (minute)	16.7	18.88
Standard Dev.	3.0955	2.8662
Observations	12	12

4. Suppose that X is a discrete random variable taking values in the non-negative integers $\{0, 1, 2, ...\}$. Let $G(s) = E(s^X)$ denote the probability generating

題號:383

科目:統計學(F)

題號: 383 共 2 頁之第 2 頁

function of X. Find the mean of X in terms of the probability generating function G(s). (5 points)

- 5. Suppose that y is a constant vector in \mathbb{R}^n , X is a given $n \times k$ matrix, and \mathbb{B} is an unknown vector in \mathbb{R}^k . Find the value of \mathbb{B} that minimizes the norm of the vector $y X\mathbb{B}$. (10 points)
- 6. Suppose that X and Y follow a bivariate normal distribution, the correlation coefficient between X and Y is ρ, the marginal distribution of X is normal with mean 0 and standard deviation σ_X, and the marginal distribution of Y is normal with mean 0 and standard deviation σ_Y. Find the conditional variance of Y given X = x, where x is a constant. (10 points)
- 7. Let $Y_1, Y_2, ..., Y_n$ be a random sample of observations from a uniform distribution with probability density function $f(y_i|\theta) = 1/\theta$, for $0 \le y_i \le \theta$ and i = 1, 2, ..., n. Find the maximum likelihood estimator of the parameter θ . (10 points)
- 8. Suppose that $X_1, X_2, ..., X_n$ form a random sample from a distribution for which the mean μ and the variance σ^2 are finite. Let \bar{X}_n denote the sample mean. Use the Chebyshev inequality to prove that \bar{X}_n converges to μ in probability. (10 points)
- 9. Suppose X and Y are random variables defined on the same probability space. Also suppose $E(Y|X) = \alpha + \beta X$, where α and β are constants. Use the law of iterated expectations to prove that $\alpha = E(Y) \beta E(X)$. (5 points)