題號:409

## 國立臺灣大學100學年度碩士班招生考試試題

科目:工程數學(C)

題號: 409

共 3 頁之第 / 頁

第 1~13 複選題 (答案可能有一個或多個,完全答對才給分,答錯不倒扣),考生應作答於「答案卡」; 第 14~15 計算題,考生需寫出計算過程及答案。

1. (10%) Here is an augmented matrix in which \* denotes an arbitrary number and # denotes a nonzero number.

Which of the following statements is (are) true?

- (A) The given augmented matrix is consistent and the solution is unique.
- (B) The given augmented matrix is inconsistent and the solution is unique.
- (C) The given augmented matrix is consistent and the solution is not unique.
- (D) The given augmented matrix is inconsistent and the solution is not unique.
- (E) None of the above.
- 2. (5%) Assume A is an  $m \times n$  matrix. If rank A = n, then
- (A) The columns of A are linearly independent.
- (B) Ax = b has at least one solution for every b in  $R^m$ .
- (C) Every column of its reduced row echelon form contains a pivot position.
- (D) Ax = b has at most one solution for every b in  $R^m$ .
- (E) None of the above statements is true.
- 3. (5%) For the four vectors below, which of the following statements is (are) true?
  - $\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 8 \\ 0 \\ 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$
- (A) They are linearly independent.
- (B) They span  $R^3$ .
- (C) They are linearly dependent.
- (D) They do not span  $\mathbb{R}^3$ .
- (E) None of the above.
- 4. (5%) Let V be a subspace of  $\mathbb{R}^n$  with dimension k. Which of the following statements is (are) true?
- (A) Every linearly independent subset of V contains at least k vectors.
- (B) Any finite subset of V containing more than k vectors is linearly dependent.
- (C)  $n \ge k$ .
- (D) Any finite subset of V containing less than k vectors is linearly independent.
- (E) None of the above.
- 5. (5%) Suppose that s, t, and u are vectors in  $\mathbb{R}^n$  such that s is orthogonal to u and u is orthogonal to t. Then
- (A) s is orthogonal to t
- (B) For any orthogonal  $n \times n$  matrix P, we have that Pu is orthogonal to both s nd t
- (C) For any orthogonal  $n \times n$  matrix P, we have that Ps is orthogonal to u

#### 題號:409

### 國立臺灣大學100學年度碩士班招生考試試題

科目:工程數學(C)

共 ~ 頁之第 2 頁

(D) s + t is orthogonal to u

- (E) None of the preceding statements are true.
- 6. (5%) Let M be an inner product space
- (A) Since the inner product is an integral of a product of functions, M is a function space
- (B) c < u, v > = < cu, cv > for all vectors u and v in M and for every scalar c
- (C) < T(u), v > = < u, T(v) > for all vectors u and v in M and for every linear operator T on M
- (D) If M is finite-dimensional, then M contains an orthonormal basis
- (E) None of the preceding statements are true.
- 7. (5%) An  $m \times n$  matrix P is invertible if
- (A) The reduced row echelon form of P is  $I_n$
- (B) The columns of P are linearly independent
- (C) The columns of P span  $R^m$
- (D) The rows of P are linearly independent
- (E) None of the preceding statements is true.
- 8. (5%) Suppose that S is an arbitrary  $n \times n$  matrix. Then
- (A) det S is the sum of its diagonal entries
- (B)  $\det S^2 = 2 \det S$
- (C) det S is a vector in R''
- (D) det  $S = \det S^T$
- (E) None of the preceding statements is true.
- 9. (5%) Let A be a subset of  $\mathbb{R}^3$  containing two or more vectors. Then:
- (A) The span of any two vectors in A is a plane in  $R^3$
- (B) If A contains more than three vectors, then A is linearly independent
- (C) The span of any two nonzero vectors in A is a plane in  $R^3$
- (D) Every vector in A is in the span of A
- (E) None of the preceding statements is true.
- 10. (8%) The solution for f(t) of the following equation

$$f(t) = 3t^2 - e^{-t} - \int_0^t f(\rho)e^{t-\rho}d\rho$$

has the following form:

 $f(t) = g(t) - k_1 e^{-k_2 t}$ , where  $k_1 \sim k_2$  are constants and g(t) is a function containing only polynomial terms like

題號: 409

#### 國立臺灣大學100學年度碩士班招生考試試題

科目:工程數學(C)

超號· 409 共 3 頁之第 3 頁

Which of the following item(s) is (are) true: (A).  $k_1+k_2=3$  (B).  $k_2+g(0)=1$  (C). g(1)+g(0)=4 (D). g(1)+g(-1)=8 (E) none of above.

11. (7%) The function f(x)=|x| can be expressed as a Fourier series on the interval  $-\pi \le x \le \pi$ , where

$$f(x) = |x| = a_0 + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$$

Which of the following item(s) is(are) true: (A)  $a_0 = \pi$  (B)  $a_2 + b_3 = 0$  (C)  $b_2 + b_4 = 0$  (D)  $a_1 + a_3 = -\frac{-4\pi}{9}$  (E) none of above.

12.~13. We are going to solve of the following differential equation system:

$$\frac{dx_1}{dt} = 3x_1 + x_2 - x_3$$

$$\frac{dx_2}{dt} = x_1 + 3x_2 - x_3$$

$$\frac{dx_3}{dt} = 3x_1 + 3x_2 - x_3$$

with initial values as  $x_1(0)=4$ ,  $x_2(0)=7$  and  $x_3(0)=7$ . The solution has the form as

$$x_1 = A_{11}e^{\lambda_1 t} + A_{12}e^{\lambda_2 t} + A_{13}e^{\lambda_3 t}$$

$$x_2 = A_{21}e^{\lambda_1 t} + A_{22}e^{\lambda_2 t} + A_{23}e^{\lambda_3 t},$$

$$x_3 = A_{31}e^{\lambda_1 t} + A_{32}e^{\lambda_2 t} + A_{33}e^{\lambda_3 t}$$

where  $|\lambda_1| \le |\lambda_2| \le |\lambda_3|$  and  $A_{ij}$ s are constants. Which of the following item(s) is(are) true:

12. (5%) (A) $\lambda_1 + \lambda_2 = 3$  (B)  $2\lambda_1 + \lambda_3 = 3$  (C)  $\lambda_2 + \lambda_3 = 3$  (D)  $\lambda_1 + \lambda_3 = 3$  (E) none of above.

13. (5%) (A). 
$$x_1(1) + 2x_2(1) = 6e$$
 (B).  $x_1(1) + x_3(1) = 2\cos(1)$  (C).  $x_2(1) + x_3(1) = 8e$  (D).  $x_1(1) - x_2(1) = 2\cos(1)$  (E) none of above.

14. (19%) The initial value problem

$$\frac{1}{5}\frac{d^2x}{dt^2} + \frac{6}{5}\frac{dx}{dt} + 2x = 5\cos(4t), \qquad x(0) = \frac{1}{2}, \qquad x'(0) = 0$$

has the solution with the form:

$$x(t) = \frac{1}{102} \left\{ f(t) \left[ k_1 \cos(t) + k_2 \sin(t) \right] + k_3 \cos(k_4 t) + k_5 \sin(k_4 t) \right\}$$

 $k_1, k_2, k_3, k_4$  and  $k_5$  are constants. f(t) is a function of t. Find  $k_1, k_2, k_3, k_4, k_5$  and f(t).

15. (6%) The differential equation

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \ln(x)$$

has the solution with the form:

$$y(x) = c_1 x + c_2 g_1(x) + p_1 + g_2(x)$$

 $c_1$  and  $c_2$  are arbitrary constants.  $p_1$  is a constant.  $g_1(x)$  and  $g_2(x)$  are functions of x. Find  $p_1$  and  $g_1(x)$ .

# 試題隨卷繳回