題號:253 國立臺灣大學100學年度碩士班招生考試試題

科目:電磁學(B)

題號: 253 共 / 頁之第 全 頁

1. (a) (8%) What is Poynting's theorem?

- (b) (8%) What is Helmholtz theorem?
- (c) (5%) What is the intrinsic impedance of a material medium for the electromagnetic wave?
- (d) (5%) What is the loss tangent of a material medium for the electromagnetic wave?
- (e) (10%) Write down the boundary conditions of electromagnetic waves propagating through the interface between two arbitrary media?
- 2. (14%) Charge is distributed with uniform density ρ_0 C/m³ in the spherical region r < a. Find the electric displacement field \bar{D} everywhere.
- 3. (14%) Consider two electric fields given by

$$\vec{E}_{1} = (C\vec{a}_{x} + C\vec{a}_{y} + \vec{a}_{z})\cos(10^{9}t - 10z) \quad \text{V/m}$$

$$\vec{E}_{2} = (\vec{a}_{x} + C\vec{a}_{y} - 2\vec{a}_{z})\sin(10^{9}t - 10z) \quad \text{V/m}$$

- (a) Find the polarization of $\vec{E}_1 + \vec{E}_2$, for C=2.
- (b) Find the value of C for which $\bar{E}_1 + \bar{E}_2$ is circularly polarized.
- 4.(16%) Region 1 (z<0) is free space, whereas region 2 (z>0) is a perfect dielectric medium characterized by $\varepsilon=4\varepsilon_0$, $\mu=\mu_0$. For a uniform plane wave having the electric field

$$\vec{\mathbf{E}} = E_0 \cos(3 \times 10^8 t - z) \vec{\mathbf{a}}_x$$

normal incident on the interface z=0 from region 1, obtain the expression for the reflected and the transmitted electric fields.

5. (20%) The electric field of a uniform plane wave propagating in a perfect dielectric medium having $\mu = \mu_0$ is given by

$$\vec{E} = 10\cos(3 \times 10^7 t + 0.2x)\vec{a}$$
. V/m

- (a) Find the phase velocity.
- (b) Find the permittivity of the medium.
- (c) Find the associated magnetic field H.
- (b) Find the time-average Poynting vector.