題號:248

國立臺灣大學100學年度碩士班招生考試試題

科目:控制系統(B)

題號: 248

共 之 頁之第 1 頁

1.

- (a) Discuss the existence condition of Laplace Transform. (5%)
- (b) Discuss the existence condition of Fourier Transform. (5%)
- (c) According to (a) and (b), please discuss their relation with the pole positions in the s-plane and explain if they are stable? (10%)
- 2.

A feedback control system is shown in Fig.1. Please find the values of the control parameters k_1 and k_2 to achieve the following conditions for the closed-loop step response. (20%)

- (i) peak time $T_p = 1$ sec
- (ii) settling time $T_s = 2$ sec

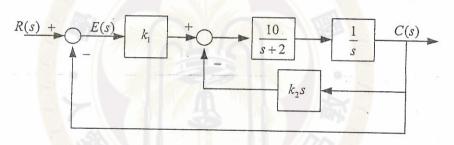
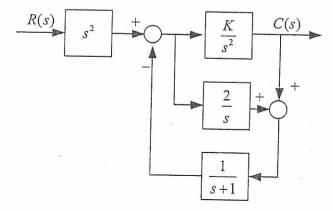



Fig. 1

3.

A control system has three closed-loop poles, including two conjugated imaginary poles and one real pole, as shown in Fig. 2.

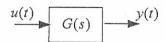
- (a) Please find the value of K according to the Routh stability criterion. (10%)
- (b) Please find the values of the three poles in accordance with (a). (10%)

見背面 Fig. 2

題號:248

國立臺灣大學100學年度碩士班招生考試試題

科目:控制系統(B)


題號: 248

共 1 頁之第 2 頁

4.

A position control system is shown in Fig.3, which open-loop transfer function is

$$G(s) = \frac{10}{s(s+2)}$$

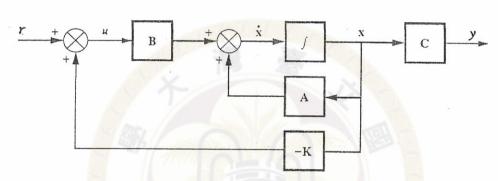


Fig. 3

- (a) Derive the state space equation using the state variables $x_1 = y$ and $x_2 = dy/dt$. (5%)
- (b) Design a state feedback controller K for u = -KX to match the closed-loop conditions: $\xi = 1/\sqrt{2}$; $\omega_n = 2\sqrt{2}$. (8%)
- (c) If an unit step function is given as reference input r, please solve the steady state error. (7%)

5.

An unity feedback control system has the open-loop transfer function as

$$G(s) = \frac{w_n^2}{s(s + 2\xi w_n)}$$

- (a) Please find the closed-loop transfer function T(s). (5%)
- (b) Please find the relation between the phase margin (PM) and the damping ratio ξ . (8%)
- (c) Please find the relation between $|T(jw_c)|$ and PM, where w_c is the crossover frequency of the open-loop system using the Nyquist plot. (7%)

試題隨卷繳回