國立臺灣大學100學年度碩士班招生考試試題

科目:材料力學(B)

題號:215

題號: 215 共 / 頁之第 全 頁

1.(25%) A vertical straight column with rigidity EI is subjected to a compressive load P. When the load P is over the critical loading the column will buckle under the slightest disturbance, and the buckling equation and boundary conditions are given in the following equations:

$$v''(x) + k^2 v(x) = k^2 \delta + \frac{M_0}{EI}, \quad 0 < x < L,$$

 $v(0) = 0, \quad v'(0) = 0, \quad v(L) = \delta, \quad v'(L) = 0,$

where M_0 and δ are, respectively, the unknown moment and deflection, and $k^2 = P/(EI)$.

(a)(5%) By observing the boundary conditions at x = 0, what type of support is it at the bottom (fixed, pinned, or free)?

(b)(10%) Determine the first two critical loadings P_c .

(c)(10%) Determine the first two buckled modes of $v(x) \neq 0$

2.(25%) A plane stress is given by

$$\tau = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{bmatrix}.$$

The stress vector T acts on an inclined plane whose normal n making an angle θ with respect to the x-axis. Correspondingly, s denotes the shear direction along the plane with $s \cdot n = 0$. The Cauchy formula in terms of τ , and n is $\tau n = T$.

(a)(10%) By using $N = T \cdot n$ and $S = T \cdot s$, please derive the normal stress N and the shear stress S in terms of σ_x , σ_y , τ_{xy} and θ (stress transformation formulas).

(b)(5%) Can you find an angle θ_p and write out θ_p such that N is a maximum? In this orientation what is the value of S?

(c)(5%), Can you find an angle θ_s and write out θ_s such that S is a maximum? In this erientation what is the value of N?

(d)(5%) If $\sigma_x \sigma_y - \tau_{xy}^2 > 0$, can you find an orientation such that N is zero?

3.(20%) A horizontal beam is 10 m long, 1 m wide, and 1 m depth, and made of isotropic, linearly elastic material with Young's modulus E=120 GPa and Poisson's ratio $\nu=0.2$. It is subjected to a uniformly distributed load q=8 kN/m acting vertically downwards over the entire span $0 \le x \le 10$ m. The beam is fixed at the left end x=0.

(a)(10%) If the right end x = 10 m of the beam is free, derive the deflection curve w(x) for $0 \le x \le 10$ m.

(b)(10%) If the right end x = 10 m is supported by an elastic spring with spring stiffness k = 15 MN/m, determine the reaction force induced in the spring support.

4.(12%) Suppose the material under consideration is isotropic, linearly elastic.

(a)(3%) What is the formula expressing the shear modulus G in terms of Young's modulus E and Poisson's ratio ν ? For the material in Problem 3, determine the value of the shear modulus G.

(b)(5%) For the beam in Problem 3(a), calculate the shear stress $\tau(x,y,z)$ and the shear strain $\gamma(x,y,z)$ on the cross section $-0.5 \le y \le 0.5$ m, $-0.5 \le z \le 0.5$ m at the fixed end x=0.

(c)(4%) Check and compare the value of G you just obtained in (a) with the value of G found in $\tau = G\gamma$ where the values of τ and γ are those you just calculated in (b). Please comment on your check and comparison.

5.(18%) A horizontal member is 10 m long, 1 m wide, and 1 m depth, and made of isotropic, linearly elastic material with Young's modulus E=120 GPa and the thermal expansion coefficient α . The temperature on the upper face is raised by an amount $\Delta T=10^{-5}/\alpha$, but the temperature on the lower face remains unchanged. In between the temperature varies linearly.

(a)(9%) Suppose the member is a cantilever. Find the axial strain and curvature.

(b)(9%) Suppose the member is fixed at both ends. Find the axial force and moment induced in the member.