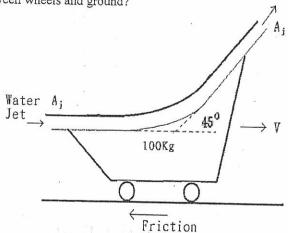

題號:217 國立臺灣大學100學年度碩士班招生考試試題

科目:流體力學(C)

2 頁之第


Problem 1. (25%)A container ABCDEFGHI is full of liquid as in figure. BCDE forms a circle with radius 2m. AB=0.5m. The density of the fluid is 1g/cm³. We only consider unit width vertical to this paper.

- (a) (5%)What is the pressure at point C? Give your answers in Head (m)
- (b) (10%) Calculate the total net force on wall EF. Give the magnitude, direction and position of the static force. (force in Newton)
- (c) (10%)Calculate the total net force on wall ABCDEF. Give the magnitude, direction and position of the total static force (force in Newton).

Problem 2 (25%) As in figure. Water jet impact on the cart, cart starts to move. The cross section of the jet is A_j=0.01 m², the jet length along the cart surface is 5m and the flow rate is 0.1cms.

- (a) (5%) Draw the control volumes for all the questions below and list equations that you shall use for this problem.
- (b) (5%) If there is no bottom friction, at the steady state, what is the speed of the cart and what is the force exerted to the cart by water jet?
- (c) (6%) If the friction is 10 Nt, what is the speed of the cart at steady state
- (d) (9%) If the cart does not move under the jet impact, what is minimum friction factor required between wheels and ground?

題號:217

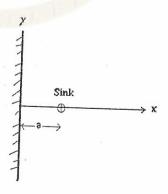
國立臺灣大學100學年度碩士班招生考試試題

科目:流體力學(C)

題號: 217

共 2. 頁之第 2 頁

Problem 3. (25%) Dimensional Analysis


We want to know what is the force exerted to building 101 by a strong wind. The wind speed is 100Km/hr. For this problem, let us simplify 101 building as a cylinder with radius 25m and height 500m. Now

- (a) (6%) List all variables that you think are related to this problem. List these variables under three different groups: Material characteristic, shape, force. You should list at least 6 variables and explain why they are relevant. (Note: No explanation, no point)
- (b) (4%) Find the number of π terms and list the repeating variables.
- (c) (6%)Find the dimensionless variables
- (d) (3%) Explain how you would do a lab experiment with a model 100 times smaller in each side.
- (e) (6%) Give the formula we can use relate the force measured in lab to the real force on building 101. Explain if there will be any difficulty in completing the task.

Problem. 4 (25%) Potential Flow

For a sink of strength M located close to a wall as shown in the figure.

- (a) (8%)Write down the stream function ψ and velocity potential ϕ for this flow field
- (b) (10%)Draw a few (at lease 2) stream lines to show the flow field
- (c) (7%) What is the pressure along the wall if $P=P_0$ at y=0 and $x=\infty$

