題號:211

科目:工程數學(A)

1.(20%)

Give the following matrix:

$$A = \left[\begin{array}{cc} 2 & 4 \\ 3 & 1 \end{array} \right]$$

(a)(5%) Find the eigenvalues of A.

(b)(5%) Find the eigenvectors of A.

(c)(5%) Diagonalize A, i.e., find matrices P and D such that $P^{-1}AP = D$, where D is a diagonal matrix.

(d)(5%) Find A⁶ [By using the results from (c)].

2.(15%) Let $\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$ be the Laplace transformation of f(t). (a)(5%) Show that $\mathcal{L}[t] = 1/s^2$.

(b)(5%) Show that $\mathcal{L}[f''(t)] = s^2 \mathcal{L}[f(t)] - sf(0) - f'(0)$.

(c)(5%) Find $\mathcal{L}[\cos(\omega t + \theta)]$, where ω and θ are constants.

3.(15%) Given a vector $\mathbf{F} = y^2\mathbf{i} + x^2\mathbf{j} + z^2\mathbf{k}$, and a cylindrical surface S of $x^2 + y^2 \le 4$, $0 \le z \le 5$. Using the Gauss divergence theorem, evaluate the surface integral.

4(a)(10%) Find the general solution of

$$\frac{dy(x)}{dx} = x^3(y-x)^2 + x^{-1}y, \quad x > 0.$$

4(b)(5%) If we further require y(1) = -2, what is the solution of y(x).

5(a)(5%) Find the Fourier series expansion for the following function

$$f(x) = x + x^2, -\pi < x < \pi.$$

5(b)(3%) Express the Parseval's relation in terms of the Fourier coefficients a_0 , a_k , b_k , k=

5(c)(7%) Can you prove that the Fourier coefficients in (a) satisfy the Parseval's relation. (Hint $\sum_{k=1}^{\infty} 1/k^4 = \pi^4/90$ and $\sum_{k=1}^{\infty} 1/k^2 = \pi^2/6$.)

6.(20%) For the one-dimensional heat conduction equation:

$$u_t = u_{xx} + f(u), \quad x \in \mathbb{R}, \quad t > 0, \tag{1}$$

the solution with u(x,t)=q(x-ct) is called a wave solution, where $c\in\mathbb{R}$ is the wave propagation speed. Let $\xi = x - ct$, and $q' = dq/d\xi$ and $q'' = d^2q/d\xi^2$.

(a)(5%) Derive an ordinary differential equation for $q(\xi)$, that Eq. (1) has a wave solution u = q(x - ct).

(b)(15%) Let

$$f(u) = u(1 - u)(u - 0.3). (2)$$

Derive the wave solution u(x-ct) of Eq. (1) with the above f(u) [Hint q'=kq(q-1), and c and k are to be determined]. Write k = ? and c = ?.

試題隨卷繳回