題號:228 國立臺灣大學100學年度碩士班招生考試試題

科目:工程數學(B)

題號: 228

共 之 頁之第 / 頁

1. (15%)

(1) Solve
$$x^3y''' + xy' - y = 0$$
.

(2) Solve
$$(y - x\sqrt{x^2 + y^2}) dx + (x - y\sqrt{x^2 + y^2}) dy = 0$$
.

2. (15%) Knowing
$$L[J_o(t)] = 1/\sqrt{s^2 + 1}$$
 and $y(0) = 1$, $y'(0) = 0$; use Laplace transform to solve $ty'' + y' + ty = 0$.

3. (10%)

- (1) Write the 3 x 3 matrix of the geometric transformation representing the z-axis counterclockwise rotation (i.e., the axis of rotation perpendicular to the x-y plane).
- (2) Find the eigenvalues and eigenvectors of this 3 x 3 transformation matrix.
- 4. Consider an elastic string of length L, fixed at its ends on the x axis at x=0 and x=L. Its displacement function satisfies:

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} \quad \text{for } 0 < x < L, \ t > 0,$$

$$y(x,0) = f(x) \quad \text{for } 0 \le x \le L,$$

$$\frac{\partial y}{\partial t}(x,0) = g(x) \quad \text{for } 0 \le x \le L.$$

(1) (8%) For zero initial velocity, which of the functions listed below gives the correct displacement? (Justification of your answer is required to get credit.)

(a)
$$y(x,t) = \frac{2}{L} \sum_{n=1}^{\infty} \left(\int_{0}^{L} f(\xi) \cos\left(\frac{n\pi\xi}{L}\right) d\xi \right) \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi ct}{L}\right)$$

(b)
$$y(x,t) = \frac{2}{L} \sum_{n=1}^{\infty} \left(\int_{0}^{L} f(\xi) \sin\left(\frac{n\pi\xi}{L}\right) d\xi \right) \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi ct}{L}\right)$$

(c)
$$y(x,t) = \frac{2}{L} \sum_{n=1}^{\infty} \left(\int_{0}^{L} f(\xi) \cos\left(\frac{n\pi\xi}{L}\right) d\xi \right) \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi ct}{L}\right)$$

(d)
$$y(x,t) = \frac{2}{L} \sum_{n=1}^{\infty} \left(\int_{0}^{L} f(\xi) \sin\left(\frac{n\pi\xi}{L}\right) d\xi \right) \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi ct}{L}\right)$$

- (2) (6%) For zero initial velocity and $f(x) = 95 \sin\left(\frac{6\pi x}{L}\right)$, determine the displacement function.
- (3) (6%) For zero initial displacement and $g(x) = 95\sin\left(\frac{6\pi x}{L}\right)$, the displacement is $y(x,t) = \frac{95}{3\pi c}\sin\left(\frac{3\pi x}{L}\right)\sin\left(\frac{3\pi ct}{L}\right)$. What is the displacement if $f(x) = g(x) = 95\sin\left(\frac{6\pi x}{L}\right)$?

(4) (5%) For zero initial velocity and
$$f(x) = H(x - \frac{1}{3}L) - H(x - \frac{2}{3}L)$$
, sketch $y(x, \frac{L}{6c})$.

(5) (5%) Following (4), sketch
$$y(x, \frac{L}{2c})$$

題號:228

國立臺灣大學100學年度碩士班招生考試試題

科目:工程數學(B)

共ン頁之第シ頁

5. (15%) Write down the answers to the following questions. (Derivations are not required.)

- (1) Let $\Psi(r,\theta) = \cos\theta/r^2$. Evaluate the line integral $\oint_C \Psi \mathbf{n} d\ell$ over a circle C of radius 2 centered at the origin. (\mathbf{n} denotes unit vector normal to the contour of the circle C.)
- (2) Let $\Phi(r,\theta)$ satisfy the 2-D Laplace equation (i.e. $\nabla^2 \Phi = 0$); and $\Phi = \cos^2 \theta \sin^2 \theta$, $\partial \Phi/\partial r = 2\cos(2\theta)$ along the contour of a unit circular disk S. Evaluate the surface integral $\iint_S \nabla \Phi \cdot \nabla \Phi \, dA$ over the circular disk S.

- 6. (15%) Let z = x + iy denote the complex variable, $\overline{z} = x iy$ the complex conjugate of z, and f(z) a complex function. Answer the following questions. (Derivations are not required.)
 - (1) Evaluate $\oint_C \frac{\overline{z}}{\overline{z} (i/2)} d\overline{z}$ over C: |z| = 1.
 - (2) Let f(z) be analytic on the upper-half of z-plane and $|f(z)| \to 0$ as $|z| \to \infty$. If on the real axis, f(z) takes the form $\frac{x-i}{x^2+1}$, find the function f(z).

 hint>: Apply Cauchy integral formula.
 - (3) If the Laurent series expansion of $f(z) = \frac{z}{(z-i)(z+1)^2}$ about z = -1 is denoted by $\sum_{n=-\infty}^{n=+\infty} a_n (z+1)^n$, find $\sum_{n=-\infty}^{n=+\infty} a_n = ?$