題號:49 科目:代數

典 1 頁之第 全 頁

NOTATIONS:

 S_n , the symmetric group of $n \ge 1$ letters.

 A_n , the subgroup of S_n consisting of even permutations.

 \mathbb{F}_p , the finite field with p elements, p a prime.

 $Mat_n(k)$, the ring of $n \times n$ matrices with entries from the field k.

k[x], polynomial ring in one variable x over the field k.

SL(n, k), the group of $n \times n$ matrices of determinant 1 with entries from field k.

(1) (a) (3%) Let $\sigma \in S_9$ be the following permutation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 6 & 7 & 2 & 9 & 8 & 1 \end{pmatrix}.$$

Write σ as a product of disjoint cycles.

- (b) (3%) Let H be the cyclic subgroup of S_9 generated by σ . Consider this group H acting on the set $\{1, 2, \ldots, 9\}$, find the orbit of the element 1.
 - (c) (3%) Write σ as a product of transpositions. Is σ in the group A_9 ?
 - (d) (8%) Count the number of elements in the conjugacy class of $\sigma \in S_9$.
- (2) (10%) Let $\frac{1}{1+\sqrt[5]{2}+\sqrt[5]{4}} = x + y\sqrt[5]{2} + z\sqrt[5]{4} + w\sqrt[5]{8} + u\sqrt[5]{16}$. Solve x, y, z, w, u in \mathbb{Q} .
- (3) (15%) Let $(\mathbb{Z}/N\mathbb{Z})^{\times}$ be the multiplicative groups of integers modulo N which consists of congruence classes of integers a relatively prime to N. Prove that $(\mathbb{Z}/105\,\mathbb{Z})^{\times}$ has a subgroup which is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$, i.e. direct sum of 3 copies of the cyclic group of order 2.

(4) (20%) Let k be a field.

- (a) Suppose matrix $A \in \operatorname{Mat}_n(k)$ such that AB = BA for all $B \in \operatorname{Mat}_n(k)$. Prove that A must be a diagonoal matrix.
- (b) Let $I \neq 0$ be a two-sided ideal of the matrix ring $\operatorname{Mat}_n(k)$. Show that $I = \operatorname{Mat}_n(k)$ must hold.

(5) (20%) Let p be a prime number.

(a) Count the number of 1-dimensional subspaces inside the two-dimensional \mathbb{F}_p -vector space $V = \mathbb{F}_p^2$.

(b) Count the number of elements in the finite group $SL(2, \mathbb{F}_p)$

- (c) Verify that any Sylow p-subgroup of $\mathrm{SL}(2,\mathbb{F}_p)$ is isomorphic to the cyclic group of order p.
- (d) A theorem of Sylow asserts that any two Sylow p-subgroups are conjugate to each other. Use this to prove that there is one-to-one correspondence between the set of Sylow p-subgroups for $SL(2, \mathbb{F}_p)$ and the set of 1-dimensional subspaces inside $V = \mathbb{F}_p^2$.

(6) (18%) Let k be the field $\mathbb{Q}(\sqrt{-3})$.

(a) Show that the polynomial $x^3 - 2$ is irreducible in k[x].

- (b) Prove that there is an isomorphism from the quotient ring $k[x]/(x^3-2)$ to the field $\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$ extending the ientity automorphism on k, and sending the coset $x+(x^3-2)$ to $\sqrt[3]{2}e^{2\pi i/3}$.
- (c) Show that the group of all automorphisms of $\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$ is isomorphic to the symmetric group S_3 .