題號:57 國立臺灣大學100學年度碩士班招生考試試題

科目:機率統計

共 / 頁之第 全 頁

1. (10%) Let X be a continuous random variable with the distribution function F(x). Derive the corresponding distribution function of F(X).

- 2. (10%) Let X and Y be mutually independent Chi-square random variables with the degrees of freedom m and n. Compute the mean of U = (nX)/(mY) for n > 2.
- 3. (10%) Let X_1, \dots, X_n be a random sample from a population with density function $f(x) = 0.5\sigma^{-1} \exp(-|x|/\sigma) I_{(-\infty,\infty)}(x)$. Find a moment estimator of σ .
- 4 Let X_1, \dots, X_n be a random sample from an exponential distribution with the density function $f(x) = \tau^{-1} \exp(-x/\tau) I_{(0,\infty)}(x)$.
- (4a) (10%) Derive the sampling distribution of the maximum likelihood estimator of τ .
- (4b) (10%) Find the uniformly minimum variance unbiased estimator of τ .
- 5. Let X_1, \dots, X_n be a random sample from a geometric distribution $P(X = x) = \theta(1-\theta)^{x-1}I_{\{1,2,\dots\}}(x)$, and θ have a uniform prior distribution on [0, 1].
- (5a) (10%) Derive the posterior distribution of θ .
- (5b) (10%) Based on the loss function $L(\theta, \delta(X_1, \dots, X_n)) = (\delta(X_1, \dots, X_n) \theta)^2$, find the Bayes estimator of θ .
- 6. Suppose that X_1, \dots, X_m are independent with $X_i \sim Binomial(n, p_i)$.
- (6a) (8%) Derive a likelihood ratio test for the null hypothesis $H_0: p_1 = \cdots = p_m$ versus the alternative hypothesis $H_A: p_i \neq p_j$ for some $i \neq j$.
- (6b) (7%) What is the large sample distribution of the test statistic?
- 7. (15%) Define the following terms:
- (7a) random variable. (7b) convergence in distribution. (7c) strong law of large numbers.

試題隨卷繳回