國立交通大學 102 學年度碩士班考試入學試題

科目:訊號與系統(8041)

考試日期:102年2月2日 第2節

科目·訊號與系統(0041) 系所班別:電機學院碩士在職專班 組別:電信組

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 1. (30%) Consider the following 4 systems, where x(t) denotes the input and y(t) the output.

 - (i) modulation, $y(t) = x(t) \cos(100 \pi t)$, (ii) convolution, $y(t) = \int_{\tau-\infty}^{\infty} x(\tau)e^{-(\tau-\tau)}d\tau$,
 - (iii) time scaling, y(t)=x(2t),
- (iv) averager, $y(t) = \frac{1}{2T} \int_{\tau=t-T}^{t+T} x(\tau) d\tau$.
- (a) (4%) Which systems are linear?
- (b) (4%) Which systems are causal?
- (c) (4%) Which systems are time-invariant?
- (d) (8%) For the system in (iii), suppose the input is a rectangular pulse, x(t)=u(t)-u(t-2T), where u(t) is a unit-step function. Find and plot the output y(t) and its Fourier transform Y(t).
- (e) (10%) Redo (d) for the system in (iv).
- 2. (20%) Write down and Prove the Parseval's relation for
 - (a) continuous-time Fourier series expansion, and
 - (b) continuous-time Fourier transform, respectively.
- 3. (25%) Consider the conversion of a continuous-time signal to a discrete-time sequence.
 - (a) (10%) Draw a block diagram to explain the sampling theorem.
 - (b) (15%) Suppose a continuous-time signal $x(t) = 6\cos 8\pi t$ is sampled at 10Hz. The sampling time is T=1/10 second. Denote the impulse-sampled signal as

$$x_s(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$$
, where $\delta(t)$ is an impulse function. Denote the

discrete-time sampled sequence as $x[n] = x(t)|_{t=nT}$

Find and plot

- the continuous-time Fourier transform of x(t), (i)
- the continuous-time Fourier transform of the sampled signal $x_s(t)$,
- (iii) the discrete-time Fourier transform of the sampled sequence x[n].
- 4. (25%) Consider a system described by $\frac{d}{dt}y(t) + ay(t) = \frac{d}{dt}x(t) + bx(t)$, where x(t)

denotes the input and y(t) the output.

- (a) (2%) Find its transfer function.
- (b) (2%) Sketch its pole/zero plot.
- (c) (2%) Is it causal and stable? Under what conditions?
- (d) (3%) Does it have a causal and stable inverse system? If yes, find it; otherwise, explain.
- (e) (3%) Find its impulse response.
- (f) (3%) Find its step response.
- (g) (10%) Find the output for the following inputs
 - $x(t) = e^{-bt} \cdot u(t),$ (i)
 - $x(t) = \cos 8t, -\infty < t < \infty$. (ii)