大同大學 102 學年度研究所碩士班入學考試試題

所別:資訊工程研究所

第 1/2 頁

考試科目: 計算機概論

	註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 不可以使用計算器。
Pa	rt I. 資料結構 (50 points)
	Choose the correct or best answer for each of the following 5 questions (10 points, 2 points each). For an extremely unbalanced binary search tree, its worst-case insertion efficiency will be (1) O(1) (2) O($\log n$) (3) O(n) (4) O($n \log n$) (5) O(n^2) (6) O($n!$).
2	If node A is the parent of node B, and B is the parent of node C, then A and B are C's (1) root (2) child (3) father (4) descendant (5) ancestor (6) sibling.
3	If the left sub-tree and right sub-tree of a nonempty binary tree T are T_L and T_R , then the height of T , height(T), equals to (1) max{ height(T_L), height(T_R)} (2) height(T_L) + height(T_R) (3) min{ height(T_L), height(T_R)} (4) 1 + min{ height(T_L), height(T_R)} (5) 1 + height(T_L) + height(T_R) (6) 1 + max{ height(T_L), height(T_R)}.
4	A binary tree in which the key value in each node is no smaller than those in its children (if any) is called (1) an AVL-tree (2) a max heap (3) a min heap (4) a red-black tree (5) a binary search tree (6) a spanning tree.
5. ₋	Merge sort uses (1) divide and conquer strategy (2) decrease and conquer strategy (3) brute force approach (4) backtracking approach (5) heuristic approach (6) greedy approach
	Show the result of each of the following 3 questions (30 points, 10 points each).
6 .]	Evaluate the following prefix and postfix expressions when $A = 6$, $B = 2$, $C = 5$, $D = 5$, $E = 1$, and $F = 2$ (i) Prefix: $+ / \times + ABC - DEF$ (ii) Postfix: $AB + C \times DE - F \times /$
7. \	What will (i) Recu(X, Y, 3, 3) and (ii) Recu(X, Y, 7, 6) return, respectively? int Recu(int i, int j) { int $X[] = \{0, 1, 2, 3, 2, 4, 1, 2\}; int Y[] = \{0, 2, 4, 3, 1, 2, 1\}; if (i == 0 j == 0) return 0; if (X[i] == Y[j]) return Recu(i-1,j-1) + 1; else return max(Recu(i,j-1), Recu(i-1,j)); $
8.]	Let a be the start vertex. Show the traversal orders for (i) breadth first search (BFS), and (ii) depth first search (DFS) for the graph (represented by the adjacency list) on the right. $c \rightarrow a \rightarrow b \rightarrow e \rightarrow c \rightarrow d \rightarrow f \rightarrow b \rightarrow e$
\triangleright	Answer the following question (10 points).

<continued on next page>

9. An ADT list implemented by C/C++ can be array-based (a static approach) or pointer-based (a dynamic approach). Make a comparison of the two approaches by stating their advantages and disadvantages in terms of (i) run-time list size limitation, (ii) list item memory usage, and (iii) list item retrieval time.

大同大學 102 學年度 研究所碩士班 入學考試試題

考試科目:計算機概論

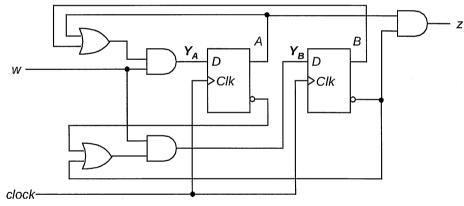
所別:資訊工程研究所

第 2/2 頁

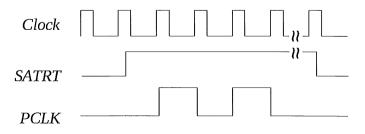
註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 不可以使用計算器。

Part II: 基本數位邏輯 (50 points)

〈接前員〉


10. (4 points) Convert the decimal number 247 to (a) binary, (b) hexadecimal.

11. (6 point) Perform subtraction on the given <u>unsigned binary</u> number using the 2's complement of the subtrahend. If the results are negative, find their 2's complement and affix a minus sign. (Assume all the performances are limited to 8-bit.)


(a) 1010100 - 10100

(b) 11001 - 1011001

- 12. (10 points) Given the Boolean functions xy'+x'(y+z)+y'z, answer the following questions.
 - (a) Express it as a sum-of-minterms.
 - (b) Simplify it into a minimal sum-of-products using **Boolean algebra** manipulation.
- 13. (10 points) Given a logic function, $F(x_1, x_2, x_3, x_4) = \sum m(4, 6, 7, 11, 12, 15) + D(3, 8, 9)$.
 - (a) Find the minimal sum-of-products expression.
 - (b) <u>Draw</u> the minimal <u>all NAND</u> circuit. (Assume that the input variables are available in both uncomplemented and complemented forms.)
- 14. (12 points) A synchronous sequential logic circuit with one input w and one output z is shown.

- (a) Find the input equation of each flip-flop and output equation.
- (a) Find the state table or transition table.
- (b) Find the state diagram.
- 15. (8 points) Find the <u>simplest state diagram</u> of a synchronous sequence circuit to meet the requirements. The circuit has one input **START** and one output **PCLK**. When the **START** change from 0 to 1, the **PCLK** will send two pulses as shown in figure. Assume the time that **START** returns form 1 to 0 is longer than 10 clock cycles.

