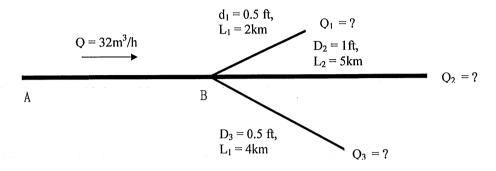
大同大學102 學年度研究所碩士班入學考試試題


考試科目:單操與輸送

所別:化學工程研究所

第 1/1 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

1. Calculate the <u>flow rate</u> of <u>each</u> branch pipeline, Q₁, Q₂, and Q₃, in a petroleum distribution network with delivery flowrate of 32 m³/h. The delivery pressure at location A is 1.82 MPa and the end pressures are 1 atm. (25%)

- 2. A hot stream of kerosene at 150^{0} F is to be cooled to 100^{0} F by a <u>counter-flow</u> water stream at 70^{0} F. If the mass flow rate of the kerosene stream is $5 \text{ lb}_{m}/s$ and the exit temperature of the water stream is 100^{0} F. Calculate the required mass flow rate of the water stream and the required heat-transfer area if the overall heat-transfer coefficient is $20 \text{ Btu/h-ft}^{2-0}$ F. Cp for kerosene = $0.5225 Btu/lb_{m} \cdot {}^{0}$ F, Cp for water = $0.999 Btu/lb_{m} \cdot {}^{0}$ F. (15%)
- 3. A flat membrane with size dimension of $50 \text{cmx} 50 \text{cmx} 100 \mu \text{m}$ separates two gas mixtures containing a species of concern. If the species concentrations in the membrane surfaces are 50 and 2 mg/cm³, respectively and the species diffusion coefficient in the membrane is 3×10^{-5} cm²/s, calculate the species mass transfer rate through the membrane in mg/s. (10%)
- 4. (a) A small capillary with an inside diameter of 2.22x10⁻³ m and a length 0.317 m is being used to continuously measure the flow rate of a liquid having a density of 875 kg/m³ and a viscosity of μ= 1.13x10⁻³ (Pa)(s). The pressure-drop reading across the capillary during flow is 0.0655 m water (density 996 kg/m³). (i) What is the flow rate in m³/s if end-effect corrections are neglected? (7%) (ii) What is Reynolds number of the flow? (3%)
 - (b) Consider steady-state laminar flow inside the annulus between two concentric horizontal pipes with a length z = L, the velocity in the annulus will reach a maximum at some radius, $r = r_{max}$ which is between r_1 (outside radius of the insider pipe) and r_2 (inside radius of the outside pipe). Please find r_{max} (The flow is far from the pipe inlet, the fluid is incompressible and viscosity, μ is a constant, and the flow is driven in one direction by constant-pressure gradient). (10%)
- 5. In a single-pass shell and tube heat exchanger, cooling water is used to condense an organic vapor. Under present operating conditions, the heat transfer coefficients are h_i = 2300 W/m²K (turbulent flow of cooling water), h_o = 950 W/m²K. Fouling is negligible and the tubes are 1 in. 16 BWG carbon steel (k (thermal conductivity) = 45 W/(m)(K), D_o (outside diameter) = 25.40mm, D_i (inside diameter)= 22.10mm). Water flows in the tubes. If the cooling water rate was to rise suddenly by 10%, estimate the change in overall heat transfer coefficient based on outside diameter. (15%)
- 6. An absorber is to be designed to remove a VOC pollutant from an exhaust gas stream. Fifteen cubic meters per minute of gas at 289K and 101.3 kPa containing 5.0 mol% VOC is fed to the bottom of the absorption tower. By feeding a VOC-free solvent stream to the top of the tower, the VOC concentration is reduced to 0.3 mol%. The solvent stream leaves the tower containing 3.65 mol% VOC. With the specified stream flow rates, the overall mass transfer coefficient, K_{Y} a, equals 52.0 mol/((m²)(s)($\triangle Y_{VOC}$)). The cross-sectional area of the tower is 0.2 m². The equilibrium data at 289K may be represented by Y (mole VOC/ mole VOC-free gas) = 0.8 X (mole VOC/ mole VOC-free solvent)

Evaluate the height of tower required. (15%)